Abstract

The performance improvement of flat-plate solar air collectors (FPSACs) is vital for solar energy utilization. Accordingly, flat micro heat pipe arrays (FMHPAs) have been utilized in FPSACs given their excellent thermal conductivity and suitable specific surface area. To investigate the impact of structural parameters of the flat-plate solar air collector with flat micro heat pipe arrays and optimize the performance, this study establishes a CFD 3D model of the collector with L-shaped flat micro heat pipe arrays. Fin height H, fin spacing L, glass thickness D, and air gap thickness Sair are selected as four important structural parameters for numerical work. Response surface methodology is adopted to recognize the significance of each factor and realize the prediction and optimization of the collector's thermal efficiency. Results show that the thermal efficiency can achieve a peak value of 52.50%. An enhanced heat transfer condition in condensation is obtained when the optimal fin height and fin spacing are 25 and 4 mm, respectively. Improved thermal insulation in evaporation is also achieved when the optimal glass thickness and air gap thickness are 3 and 35 mm, respectively. The significance order of the factors is H > L > D > Sair. The results can serve as an important reference for designing the flat-plate solar air collectors.

References

1.
Wang
,
D. J.
,
Mo
,
Z. L.
,
Liu
,
Y. F.
,
Ren
,
Y. C.
, and
Fan
,
J. H.
,
2022
, “
Thermal Performance Analysis of Large-Scale Flat Plate Solar Collectors and Regional Applicability in China
,”
Energy
,
238
(
1
), p.
15
.
2.
Sandali
,
M.
,
Boubekri
,
A.
, and
Mennouche
,
D.
,
2019
, “
Improvement of the Thermal Performance of Solar Drying Systems Using Different Techniques: A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
050802
.
3.
Mund
,
C.
,
Rathore
,
S. K.
, and
Sahoo
,
R. K.
,
2021
, “
A Review of Solar Air Collectors About Various Modifications for Performance Enhancement
,”
Sol. Energy
,
228
(
16
), pp.
140
167
.
4.
Ahmed
,
S. F.
,
Khalid
,
M.
,
Vaka
,
M.
,
Walvekar
,
R.
,
Numan
,
A.
,
Rasheed
,
A. K.
, and
Mubarak
,
N. M.
,
2021
, “
Recent Progress in Solar Water Heaters and Solar Collectors: A Comprehensive Review
,”
Therm. Sci. Eng. Prog.
,
25
(
5
), p.
23
.
5.
Chen
,
C. Q.
,
Diao
,
Y. H.
,
Zhao
,
Y. H.
,
Wang
,
Z. Y.
,
Zhu
,
T. T.
,
Wang
,
T. Y.
, and
Liang
,
L.
,
2021
, “
Numerical Evaluation of the Thermal Performance of Different Types of Double Glazing Flat-Plate Solar Air Collectors
,”
Energy
,
233
(
20
), p.
13
.
6.
Ahirwar
,
B. K.
, and
Kumar
,
A.
,
2024
, “
Review on Different Techniques Used to Enhance the Thermal Performance of Solar Air Heater
,”
Int. J. Heat Mass Transfer
,
220
(
3
), p.
33
.
7.
Rajaseenivasan
,
T.
,
Srinivasan
,
S.
, and
Srithar
,
K.
,
2015
, “
Comprehensive Study on Solar Air Heater with Circular and V-Type Turbulators Attached on Absorber Plate
,”
Energy
,
88
(
10
), pp.
863
873
.
8.
Alic
,
E.
,
Das
,
M.
, and
Akpinar
,
E. K.
,
2021
, “
Design, Manufacturing, Numerical Analysis and Environmental Effects of Single-Pass Forced Convection Solar Air Collector
,”
J. Cleaner Prod.
,
311
(
34
), p.
13
.
9.
Barman
,
P.
,
Chakraborty
,
P.
,
Bhaumik
,
R.
,
Bhaumik
,
S. R.
, and
Moummi
,
N.
,
2023
, “
Experimental Study of Thermal Hydraulic Performance Improvement in Solar Air Heater Channel With V-Shaped Porous Baffles
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
11
), p.
111007
.
10.
Jain
,
S. K.
,
Agrawal
,
G. D.
, and
Misra
,
R.
,
2020
, “
Experimental Investigation of Thermohydraulic Performance of the Solar Air Heater Having Arc-Shaped Ribs With Multiple Gaps
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011014
.
11.
Chand
,
S.
,
Chand
,
P.
, and
Ghritlahre
,
H. K.
,
2022
, “
Thermal Performance Enhancement of Solar Air Heater Using Louvered Fins Collector
,”
Sol. Energy
,
239
(
9
), pp.
10
24
.
12.
Priyam
,
A.
, and
Chand
,
P.
,
2016
, “
Thermal and Thermohydraulic Performance of Wavy Finned Absorber Solar Air Heater
,”
Sol. Energy
,
130
(
8
), pp.
250
259
.
13.
Nidhul
,
K.
,
Kumar
,
S.
,
Yadav
,
A. K.
, and
Anish
,
S.
,
2020
, “
Influence of Rectangular Ribs on Exergetic Performance in a Triangular Duct Solar Air Heater
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051010
.
14.
Hosseini
,
S. S.
,
Ramiar
,
A.
, and
Ranjbar
,
A. A.
,
2018
, “
Numerical Investigation of Natural Convection Solar Air Heater with Different Fins Shape
,”
Renewable Energy
,
117
(
3
), pp.
488
500
.
15.
Patel
,
S. S.
, and
Lanjewar
,
A.
,
2020
, “
Heat Transfer and Friction Factor Correlations for Solar Air Heater With Gap in V-Rib With Symmetrical Gap and Staggered Ribs
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031018
.
16.
Singh
,
S.
,
2020
, “
Thermohydraulic Performance of Double Pass Solar Thermal Collector With Inline, Staggered and Hybrid Fin Configurations
,”
J. Energy Storage
,
27
(
1
), p.
101080
.
17.
Kumar
,
D.
,
Layek
,
A.
,
Kumar
,
A.
, and
Kumar
,
R.
,
2024
, “
Experimental Study for the Enhancement of Thermal Efficiency and Development of Nusselt Number Correlation for the Roughened Collector of Solar Air Heater
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021004
.
18.
Mahto
,
P. K.
, and
Kundu
,
B.
,
2024
, “
Experimental and Meta-Heuristic Optimization for the Highest Thermo-Hydraulic Performance of a Solar Air Heater With a V-Notch Pattern of Hemispherical Protrusions on Absorber Surfaces
,”
Int. Commun. Heat Mass Transfer
,
154
(
5
), p.
17
.
19.
Sridharan
,
M.
, and
Shenbagaraj
,
S.
,
2021
, “
Application of Generalized Regression Neural Network in Predicting the Thermal Performance of Solar Flat Plate Collector Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021013
.
20.
Korpale
,
V. S.
,
Deshmukh
,
S. P.
,
Mathpati
,
C. S.
, and
Dalvi
,
V. H.
,
2020
, “
Numerical Simulations and Optimization of Solar Air Heaters
,”
Appl. Therm. Eng.
,
180
(
17
), p.
14
.
21.
Sharma
,
V.
, and
Tariq
,
A.
,
2022
, “
Aerothermal Characteristics of Surface-Mounted Round-Edged Slit Ribs With Performance Optimization Using Response Surface Methodology
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091004
.
22.
Gill
,
R. S.
,
Singh
,
S.
, and
Singh
,
P. P.
,
2012
, “
Low Cost Solar Air Heater
,”
Energy Convers. Manage.
,
57
(
5
), pp.
131
142
.
23.
Ammar
,
M.
,
Mokni
,
A.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2021
, “
Performance Optimization of Flat Plate Solar Collector Through the Integration of Different Slats Arrangements Made of Transparent Insulation Material
,”
Sustain. Energy Technol. Assess.
,
46
(
4
), p.
19
.
24.
Shaik
,
S.
,
Bhardwaj
,
M.
,
Agarwal
,
S.
,
Yendaluru
,
R. S.
,
Hasanuzzaman
,
M.
, and
Sharma
,
K. V.
,
2021
, “
Evaluation of Optical Transmissivity of Transparent Materials on the Performance of Solar Flat Plate Collectors
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
054501
.
25.
Subiantoro
,
A.
, and
Ooi
,
K. T.
,
2013
, “
Analytical Models for the Computation and Optimization of Single and Double Glazing Flat Plate Solar Collectors With Normal and Small Air Gap Spacing
,”
Appl. Energy
,
104
(
4
), pp.
392
399
.
26.
Li
,
H.
,
Liu
,
H. Y.
, and
Li
,
M.
,
2022
, “
Review on Heat Pipe Based Solar Collectors: Classifications, Performance Evaluation and Optimization, and Effectiveness Improvements
,”
Energy
,
244
(
7
), p.
18
.
27.
Aref
,
L.
,
Fallahzadeh
,
R.
,
Shabanian
,
S. R.
, and
Hosseinzadeh
,
M.
,
2021
, “
A Novel Dual-Diameter Closed-Loop Pulsating Heat Pipe for a Flat Plate Solar Collector
,”
Energy
,
230
(
17
), p.
9
.
28.
Zhang
,
T.
,
Cai
,
J. Y.
,
Wang
,
L. Y.
, and
Meng
,
Q. L.
,
2022
, “
Comparative and Sensitive Analysis on the Filling, Operating and Performance Patterns Between the Solar Gravity Heat Pipe and the Traditional Gravity Heat Pipe
,”
Energy
,
238
(
1
), p.
18
.
29.
Rassamakin
,
B.
,
Khairnasov
,
S.
,
Zaripov
,
V.
,
Rassamakin
,
A.
, and
Alforova
,
O.
,
2013
, “
Aluminum Heat Pipes Applied in Solar Collectors
,”
Sol. Energy
,
94
(
8
), pp.
145
154
.
30.
Zhong
,
G. S.
,
Tang
,
Y.
,
Ding
,
X. R.
,
Rao
,
L. S.
,
Chen
,
G.
,
Tang
,
K. R.
,
Yuan
,
W.
, and
Li
,
Z. T.
,
2020
, “
Experimental Study of a Large-Area Ultra-Thin Flat Heat Pipe for Solar Collectors Under Different Cooling Conditions
,”
Renewable Energy
,
149
(
5
), pp.
1032
1039
.
31.
Zhao
,
Y. H.
,
Zou
,
F. L.
,
Diao
,
Y. H.
, and
Quan
,
Z. H.
,
2010
, “
Experimental Investigation of a New Flat Plate Solar Heat Collector by Micro Heat Pipe Array
,”
2010 14th International Heat Transfer Conference—ASME
,
Washington, DC
,
Aug. 8–13
, pp.
361
368
.
32.
Deng
,
Y. C.
,
Wang
,
W.
,
Zhao
,
Y. H.
,
Yao
,
L.
, and
Wang
,
X. Y.
,
2013
, “
Experimental Study of the Performance for a Novel Kind of MHPA-FPC Solar Water Heater
,”
Appl. Energy
,
112
(
12
), pp.
719
726
.
33.
Liang
,
L.
,
Zhao
,
Y. H.
,
Diao
,
Y. H.
,
Ren
,
R. Y.
,
Zhu
,
T. T.
, and
Li
,
Y.
,
2023
, “
Experimental Investigation of Preheating Performance of Lithium-ion Battery Modules in Electric Vehicles Enhanced by Bending Flat Micro Heat Pipe Array
,”
Appl. Energy
,
337
(
9
), p.
11
.
34.
Ren
,
R. Y.
,
Diao
,
Y. H.
,
Zhao
,
Y. H.
, and
Liang
,
L.
,
2023
, “
Experimental Study on Top Liquid-Cooling Thermal Management System Based on Z-Shaped Micro Heat Pipe Array
,”
Energy
,
282
(
21
), p.
14
.
35.
Zhu
,
T. T.
,
Diao
,
Y. H.
,
Zhao
,
Y. H.
, and
Ma
,
C.
,
2017
, “
Performance Evaluation of a Novel Flat-Plate Solar air Collector With Micro-Heat Pipe Arrays (MHPA)
,”
Appl. Therm. Eng.
,
118
(
9
), pp.
1
16
.
36.
Zhu
,
T. T.
,
Diao
,
Y. H.
,
Zhao
,
Y. H.
,
Ma
,
C.
,
Wang
,
T. Y.
, and
Liu
,
J.
,
2017
, “
A Comparative Investigation of Two Types of MHPA Flat-Plate Solar Air Collector Based on Exergy Analysis
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051011
.
37.
Wang
,
X.
,
Diao
,
Y.
,
Wang
,
Z.
,
Zhao
,
Y.
,
Pan
,
Y.
,
Zhang
,
D.
, and
Zhu
,
T.
,
2024
, “
Performance Investigation of a Novel Flat-Plate Solar Air Collector With L-Shaped Dual Micro Heat Pipe Arrays
,”
Appl. Therm. Eng.
,
243
(
8
), p.
122566
.
38.
Zhan
,
C. J.
,
Gao
,
W. F.
,
Liu
,
T.
,
Lin
,
W. X.
,
Song
,
X.
, and
Lan
,
Q.
,
2010
, “
Thermal Performance of an Solar Air Collector for Drying Grain
,”
J. Yunnan Normal Univer.
,
30
(
3
), pp.
38
43
.
39.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
,
Taylor & Francis
,
New York, NY
.
40.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, Vol.
6
,
Wiley
,
New York
.
41.
Gorji
,
T. B.
, and
Ranjbar
,
A. A.
,
2015
, “
Geometry Optimization of a Nanofluid-Based Direct Absorption Solar Collector Using Response Surface Methodology
,”
Sol. Energy
,
122
(
12
), pp.
314
325
.
You do not currently have access to this content.