Graphical Abstract Figure

The LHP geometry

Graphical Abstract Figure

The LHP geometry

Close modal

Abstract

The computational fluid dynamics (CFD) method is often used to study heat and mass transfer mechanisms in loop heat pipes (LHPs). However, few numerical studies have been conducted on the entire loop heat pipe system. In this work, a two-dimensional simulation model of an LHP was developed. The wicking process was described using a capillary pressure model, implemented through user-defined functions (UDFs). The flow, phase change, and heat transfer processes vary with the change of the working fluid. Therefore, the effects of ammonia, propylene, and R245fa on the heat transfer performance of the LHP were analyzed in the simulation. According to the simulation results, the LHP charged with ammonia showed the best heat transfer performance, followed by the LHP charged with propylene, and the LHP charged with R245fa showed the worst heat transfer performance. The simulation results align with the predictions from figures of merit (FOMs). Moreover, the model provides detailed insights into the temperature field and vapor–liquid distribution during LHP operation. Experiments using an LHP with the three working fluids were also conducted to verify the model's accuracy. Regarding the influence of the working fluid and the heat load on LHP performance, the simulation model aligns with the experimental results.

References

1.
Maydanik
,
Y. F.
,
2005
, “
Loop Heat Pipes
,”
Appl. Therm. Eng.
,
25
(
5
), pp.
635
657
.
2.
Wang
,
G.
,
Mishkinis
,
D.
, and
Nikanpour
,
D.
,
2008
, “
Capillary Heat Loop Technology: Space Applications and Recent Canadian Activities
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
284
303
.
3.
Guo
,
Y.
,
Lin
,
G.
,
Zhang
,
H.
, and
Miao
,
J.
,
2018
, “
Investigation on Thermal Behaviours of a Methane Charged Cryogenic Loop Heat Pipe
,”
Energy
,
157
, pp.
516
525
.
4.
Teng
,
G.
,
Yang
,
T.
,
Zhao
,
S.
, and
Meng
,
Q.
,
2018
, “
The Design and Application of Temperature Control Loop Heat Pipe for Space CCD Camera
,”
4th International Symposium on Space Optical Instruments and Applications
,
Delft
,
Oct. 16–18
, Springer International Publishing, pp.
65
74
.
5.
Li
,
J.
,
Zhou
,
G.
,
Tian
,
T.
, and
Li
,
X.
,
2021
, “
A New Cooling Strategy for Edge Computing Servers Using Compact Looped Heat Pipe
,”
Appl. Therm. Eng.
,
187
, p.
116599
.
6.
Zhang
,
H.
,
Tian
,
Y.
,
Tian
,
C.
, and
Zhai
,
Z.
,
2023
, “
Effect of Key Structure and Working Condition Parameters on a Compact Flat-Evaporator Loop Heat Pipe for Chip Cooling of Data Centers
,”
Energy
,
284
, p.
128658
.
7.
Qian
,
S.
,
Chang
,
S.
, and
Yang
,
C.
,
2021
, “
Loop Heat Pipe-Based Solar Thermal Façade Water Heating System: A Review of Performance Evaluation and Enhancement
,”
Sol. Energy
,
226
, pp.
319
347
.
8.
Ku
,
J.
,
1999
, “
Operating Characteristics of Loop Heat Pipes
,”
J. Aerosp.
,
108
(
1
), pp.
503
519
. https://www.jstor.org/stable/44729437
9.
Singh
,
R.
,
Nguyen
,
T.
,
Mochizuki
,
M.
, and
Akbarzadeh
,
A.
,
2022
, “
Working Fluid Study for Loop Heat Pipes
,”
Therm. Sci. Eng. Prog.
,
35
, p.
101451
.
10.
Guo
,
Y.
,
Lin
,
G.
,
He
,
J.
,
Zhang
,
H.
,
Miao
,
J.
, and
Li
,
J.
,
2019
, “
Supercritical Startup Strategy of Cryogenic Loop Heat Pipe With Different Working Fluids
,”
Appl. Therm. Eng.
,
155
, pp.
267
276
.
11.
Liu
,
C.
,
Xie
,
R.
,
Li
,
N.
,
Lu
,
D.
,
Hong
,
F.
, and
Wu
,
Y.
,
2020
, “
Experimental Study of Loop Heat Pipes With Different Working Fluids in 190–260 K
,”
Appl. Therm. Eng.
,
178
, p.
115530
.
12.
Dunbar
,
N.
, and
Cadell
,
P.
,
1998
, “
Working Fluids and Figure of Merit for CPL/LHP Applications
,”
Aero. Corp, CPL-98 Workshop
,
El Segundo
.
13.
Joung
,
W.
,
Lee
,
J.
, and
Lee
,
S.
,
2016
, “
Derivation and Validation of a Figure of Merit for Loop Heat Pipes With Medium Temperature Working Fluids
,”
ASME J. Heat Transfer
,
138
(
5
), p.
052901
.
14.
Chernysheva
,
M. A.
, and
Maydanik
,
Y. F.
,
2019
, “
Simulation of Heat and Mass Transfer in a Cylindrical Evaporator of a Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
131
, pp.
442
449
.
15.
Belov
,
A. E.
,
Velikanov
,
A. A.
,
Il’mov
,
D. N.
,
Nagornova
,
O. A.
,
Sobolev
,
V. V.
, and
Filatov
,
N. I.
,
2022
, “
Numerical and Experimental Study of Loop Heat Pipe Steady-State Performance
,”
Therm. Eng.
,
69
(
3
), pp.
190
201
.
16.
Mohanty
,
R. L.
,
Lather
,
R. S.
, and
Bashyam
,
S.
,
2023
, “
A Numerical Approach to Investigate the Effect of Various Fluids on the Performance of a Heat Pipe
,”
Proc. Inst. Mech. Eng.
,
238
(
5
), pp.
2118
2126
.
17.
Zhang
,
Z.
,
Cui
,
H.
, and
Zhao
,
S.
,
2023
, “
Simulation of Heat and Mass Transfer Process in a Flat-Plate Loop Heat Pipe and Experimental Comparison
,”
Appl. Therm. Eng.
,
220
, p.
119705
.
18.
Wang
,
H.
,
Xu
,
J.
, and
Hong
,
F.
,
2022
, “
Developing of an Open-Source Toolbox for Liquid-Vapor Phase Change in the Porous Wick of a LHP Evaporator Based on Openfoam
,”
Case Stud. Therm. Eng.
,
35
, p.
102068
.
19.
Li
,
J.
, and
Peterson
,
G.
,
2011
, “
3D Heat Transfer Analysis in a Loop Heat Pipe Evaporator With a Fully Saturated Wick
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
564
574
.
20.
Mottet
,
L.
,
Coquard
,
T.
, and
Prat
,
M.
,
2015
, “
Three Dimensional Liquid and Vapour Distribution in the Wick of Capillary Evaporators
,”
Int. J. Heat Mass Transfer
,
83
, pp.
636
651
.
21.
Zhang
,
X.
,
Li
,
X.
, and
Wang
,
S.
,
2012
, “
Three-Dimensional Simulation on Heat Transfer in the Flat Evaporator of Miniature Loop Heat Pipe
,”
Int. J. Therm. Sci.
,
54
, pp.
188
198
.
22.
Fang
,
T.
,
Ming
,
T.
, and
Tso
,
C. P.
,
2014
, “
Analysis of Non-uniform Heat Loads on Evaporators With Loop Heat Pipes
,”
Int. J. Heat Mass Transfer
,
75
, pp.
313
326
.
23.
Ma
,
B.
,
2020
, “
Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure With Circular and Noncircular Geometries
,”
Langmuir
,
45
, p.
36
.
24.
Mantelli
,
M. H.
,
Florez Mera
,
J. P.
, and
Milanese
,
F. H.
,
2015
, “
Thermal Model for Sintered Cylindrical Evaporators of Loop Heat Pipes (2150991)
,”
45th AIAA Thermal Conference
,
Dallas, TX
,
June 22–26
, p.
2353
.
25.
Joseph
,
D. D.
,
Nield
,
D. A.
, and
Papanicolaou
,
G.
,
1982
, “
Nonlinear Equation Governing Flow in a Saturated Porous Medium
,”
Water Resour. Res.
,
18
(
4
), pp.
1049
1052
.
26.
Ergun
,
S.
, and
Orning
,
A. A.
,
1949
, “
Fluid Flow Through Randomly Packed Columns and Fluidized Beds
,”
Ind. Eng. Chem.
,
41
(
6
), pp.
1179
1184
.
27.
Guo
,
C.
,
Guo
,
W.
, and
Zhou
,
Y.
,
2023
, “
Evaporative Wicking in Thin Porous Media
,”
Int. J. Heat Mass Transfer
,
216
, p.
124536
.
28.
Li
,
J.
,
Zheng
,
W.
,
Su
,
Y.
, and
Hong
,
F.
,
2022
, “
Pore Scale Study on Capillary Pumping Process in Three-Dimensional Heterogeneous Porous Wicks Using Lattice Boltzmann Method
,”
Int. J. Therm. Sci.
,
171
, p.
107236
.
29.
Reza
,
M.
,
2013
,
Wicking in Porous Materials: Traditional and Modern Modeling Approaches
,
CRC Press
,
Boca Raton, FL
, pp.
31
55
.
30.
Shao
,
B.
,
Jiang
,
Z.
, and
Xu
,
G.
,
2023
, “
Numerical and Experimental Study on the Vapor–Liquid Distribution of Loop Heat Pipe With Varying Density of Working Fluid
,”
Appl. Therm. Eng.
,
226
, p.
120278
.
31.
Peng
,
D. Y.
,
Robinson
,
D. B.
, and
Bishnoi
,
P. R.
,
1975
, “
Pd 16 (2) the Use of the Soave-Redlich-Kwong Equation of State for Predicting Condensate Fluid Behaviour
,”
World Petr. Congr.
,
Tokyo, Japan
,
May 11–16, 1975
.
32.
Thomson
,
G.
,
1946
, “
The Antoine Equation for Vapor-Pressure Data
,”
Chem. Rev.
,
38
(
1
), pp.
1
39
.
33.
Lee
,
W.
,
1980
, “Pressure Iteration Scheme for Two-Phase Flow Modeling,”
Multiphase Transport Fundamentals, Reactor Safety, Applications
,
Hemisphere Publishing
,
Washington, DC
, pp.
407
432
.
You do not currently have access to this content.