Abstract

Corrugated plate heat exchangers are increasingly used in two-phase flow applications for their flexible compact size and efficient heat transfer performance. This paper presents a brief review of recent studies on the flow boiling in plate heat exchangers and creates a database containing 533 data points from previous experimental studies. The collected database covers seven working fluids, a wide range of vapor quality (both mean and local) 0.01–0.94, heat flux 0.5–46 kW m−2, mass flux 5.5–137 kg m−2 s−1, chevron angle 30–70 deg, and hydraulic diameter 1.7–4.0 mm. Based on the database a brief comparison between several previous correlations are discussed. A new prediction method for flow boiling heat transfer coefficient is developed by multiple regression analysis and modifying an existing correlation. A criterion proposed by Li and Wu about the transition from micro- to macroscale was introduced with a combined dimensionless number Bd·Rel0.5 which attempts to comprehensively consider four types of forces during flow boiling. It was observed that the modified correlation shows a better agreement and predicts 74.3% and 94.9% of total data points within ±30% and ±50% error bands, respectively.

References

References
1.
Amalfi
,
R. L.
,
Vakili-Farahani
,
F.
, and
Thome
,
J. R.
,
2016
, “
Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers. Part 1: Review and Experimental Database
,”
Int. J. Refrig.
,
61
, pp.
166
184
. 10.1016/j.ijrefrig.2015.07.010
2.
Amalfi
,
R. L.
,
Vakili-Farahani
,
F.
, and
Thome
,
J. R.
,
2016
, “
Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers. Part 2: Comparison of Literature Methods to Database and New Prediction Methods
,”
Int. J. Refrig.
,
61
, pp.
185
203
. 10.1016/j.ijrefrig.2015.07.009
3.
Vakili-Farahani
,
F.
,
Amalfi
,
R.
, and
Thome
,
J. R.
,
2014
, “
Two-Phase Flow and Boiling of R-245fa in a 1 mm Pressing Depth Plate Heat Exchanger—Part I: Adiabatic Pressure Drop
,”
Interfacial Phenom. Heat Transfer
,
2
(
4
), pp.
325
342
. 10.1615/InterfacPhenomHeatTransfer.2015012027
4.
Solotych
,
V.
,
Lee
,
D.
,
Kim
,
J.
,
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2016
, “
Boiling Heat Transfer and Two-Phase Pressure Drops Within Compact Plate Heat Exchangers: Experiments and Flow Visualizations
,”
Int. J. Heat Mass Transfer
,
94
, pp.
239
253
. 10.1016/j.ijheatmasstransfer.2015.11.037
5.
Longo
,
G.
, and
Gasparella
,
A.
,
2007
, “
Heat Transfer and Pressure Drop During HFC Refrigerant Vaporisation Inside a Brazed Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5194
5203
. 10.1016/j.ijheatmasstransfer.2007.07.001
6.
Palm
,
B.
, and
Claesson
,
J.
,
2006
, “
Plate Heat Exchangers: Calculation Methods for Single and Two-Phase Flow
,”
Heat Transfer Eng.
,
27
(
4
), pp.
88
98
. 10.1080/01457630500523949
7.
Eldeeb
,
R.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2016
, “
A Survey of Correlations for Heat Transfer and Pressure Drop for Evaporation and Condensation in Plate Heat Exchangers
,”
Int. J. Refrig.
,
65
, pp.
12
26
. 10.1016/j.ijrefrig.2015.11.013
8.
Ayub
,
Z. H.
,
2003
, “
Plate Heat Exchanger Literature Survey and New Heat Transfer and Pressure Drop Correlations for Refrigerant Evaporators
,”
Heat Transfer Eng.
,
24
(
5
), pp.
3
16
. 10.1080/01457630304056
9.
Arima
,
H.
,
Kim
,
J.
,
Okamoto
,
A.
, and
Ikegami
,
Y.
,
2010
, “
Local Boiling Heat Transfer Characteristics of Ammonia in a Vertical Plate Evaporator
,”
Int. J. Refrig.
,
33
(
2
), pp.
359
370
. 10.1016/j.ijrefrig.2009.09.017
10.
Han
,
D.-H.
,
Lee
,
K.-J.
, and
Kim
,
Y.-H.
,
2003
, “
Experiments on the Characteristics of Evaporation of R410A in Brazed Plate Heat Exchangers With Different Geometric Configurations
,”
Appl. Therm. Eng.
,
23
(
10
), pp.
1209
1225
. 10.1016/S1359-4311(03)00061-9
11.
Lee
,
D.
,
Kim
,
D.
,
Park
,
S.
,
Lim
,
J.
, and
Kim
,
Y.
,
2018
, “
Evaporation Heat Transfer Coefficient and Pressure Drop of R-1233zd (E) in a Brazed Plate Heat Exchanger
,”
Appl. Therm. Eng.
,
130
, pp.
1147
1155
. 10.1016/j.applthermaleng.2017.11.088
12.
Khan
,
M. S.
,
Khan
,
T. S.
,
Chyu
,
M.-C.
, and
Ayub
,
Z. H.
,
2012
, “
Experimental Investigation of Evaporation Heat Transfer and Pressure Drop of Ammonia in a 30 Chevron Plate Heat Exchanger
,”
Int. J. Refrig.
,
35
(
6
), pp.
1757
1765
. 10.1016/j.ijrefrig.2012.05.019
13.
Hsieh
,
Y.
, and
Lin
,
T.
,
2002
, “
Saturated Flow Boiling Heat Transfer and Pressure Drop of Refrigerant R-410A in a Vertical Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1033
1044
. 10.1016/S0017-9310(01)00219-8
14.
Longo
,
G. A.
,
Mancin
,
S.
,
Righetti
,
G.
, and
Zilio
,
C.
,
2015
, “
A New Model for Refrigerant Boiling Inside Brazed Plate Heat Exchangers (BPHEs)
,”
Int. J. Heat Mass Transfer
,
91
, pp.
144
149
. 10.1016/j.ijheatmasstransfer.2015.07.078
15.
Táboas
,
F.
,
Vallès
,
M.
,
Bourouis
,
M.
, and
Coronas
,
A.
,
2010
, “
Flow Boiling Heat Transfer of Ammonia/Water Mixture in a Plate Heat Exchanger
,”
Int. J. Refrig.
,
33
(
4
), pp.
695
705
. 10.1016/j.ijrefrig.2009.12.005
16.
Thonon
,
B.
,
Vidil
,
R.
, and
Marvillet
,
C.
,
1995
, “
Recent Research and Developments in Plate Heat Exchangers
,”
J. Enhanced Heat Transfer
,
2
(
1–2
), pp.
149
155
.
17.
Kim
,
D.
,
Lee
,
D.
,
Jang
,
D. S.
,
Jeon
,
Y.
, and
Kim
,
Y.
,
2018
, “
Comparative Evaluation of Flow Boiling Heat Transfer Characteristics of R-1234ze (E) and R-134a in Plate Heat Exchangers with Different Chevron Angles
,”
Appl. Therm. Eng.
,
132
, pp.
719
729
. 10.1016/j.applthermaleng.2018.01.019
18.
Rossato
,
M.
,
Del Col
,
D.
,
Muzzolon
,
A.
, and
Rossetto
,
L.
,
2016
, “
Flow Boiling of R32 Inside a Brazed Plate Heat Exchanger
,”
Int. J. Refrig.
,
69
, pp.
165
174
. 10.1016/j.ijrefrig.2016.05.001
19.
Jin Kim
,
H.
,
Liebenberg
,
L.
, and
Jacobi
,
A. M.
,
2018
, “
Convective Boiling of R-134a Near the Micro-Macroscale Transition Inside a Vertical Brazed Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
140
(
9
), p.
091501
. 10.1115/1.4039397
20.
Panchal
,
C.
,
Hillis
,
D.
, and
Thomas
,
A.
,
1983
, “
Convective boiling of ammonia and Freon 22 in plate heat exchangers
,”
NASA STI/Recon Technical Report N, 83
.
21.
Elmaaty
,
T. M. A.
,
Kabeel
,
A.
, and
Mahgoub
,
M.
,
2017
, “
Corrugated Plate Heat Exchanger Review
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
852
860
. 10.1016/j.rser.2016.11.266
22.
Engelhorn
,
H.
, and
Reinhart
,
A.
,
1990
, “
Investigations on Heat Transfer in a Plate Evaporator
,”
Chem. Eng. Process.: Process Intensif.
,
28
(
2
), pp.
143
146
. 10.1016/0255-2701(90)80011-S
23.
Hsieh
,
Y. Y.
, and
Lin
,
T.
,
2003
, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
852
857
. 10.1115/1.1518498
24.
Danilova
,
G.
,
Azarskov
,
V.
, and
Zemskov
,
B.
,
1981
, “
Teploobmen V Plastinchatihispariteljan Razichnole Geometri
,”
Heat Transfer in Plate Evaporators of Different Geometry, Kholod. Tek
,
4
, pp.
25
31
.
25.
Huang
,
J.
,
Sheer
,
T. J.
, and
Bailey-McEwan
,
M.
,
2012
, “
Heat Transfer and Pressure Drop in Plate Heat Exchanger Refrigerant Evaporators
,”
Int. J. Refrig.
,
35
(
2
), pp.
325
335
. 10.1016/j.ijrefrig.2011.11.002
26.
Longo
,
G. A.
,
2012
, “
Vaporisation of the low GWP Refrigerant HFO1234yf Inside a Brazed Plate Heat Exchanger
,”
Int. J. Refrig.
,
35
(
4
), pp.
952
961
. 10.1016/j.ijrefrig.2011.12.012
27.
Longo
,
G. A.
, and
Gasparella
,
A.
,
2007
, “
HFC-410A Vaporisation Inside a Commercial Brazed Plate Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
32
(
1
), pp.
107
116
. 10.1016/j.expthermflusci.2007.02.004
28.
Longo
,
G.
, and
Gasparella
,
A.
,
2007
, “
Refrigerant R134a Vaporisation Heat Transfer and Pressure Drop Inside a Small Brazed Plate Heat Exchanger
,”
Int. J. Refrig.
,
30
(
5
), pp.
821
830
. 10.1016/j.ijrefrig.2006.11.011
29.
Longo
,
G.
,
Gasparella
,
A.
, and
Sartori
,
R.
,
2004
, “
Experimental Heat Transfer Coefficients During Refrigerant Vaporisation and Condensation Inside Herringbone-Type Plate Heat Exchangers with Enhanced Surfaces
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4125
4136
. 10.1016/j.ijheatmasstransfer.2004.05.001
30.
Cooper
,
M.
,
1984
, “Heat Flow Rates in Saturated Nucleate Pool Boiling-a Wide-Ranging Examination Using Reduced Properties,”
Advances in Heat Transfer
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Elsevier
,
New York
, pp.
157
239
.
31.
Vakili-Farahani
,
F.
,
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2014
, “
Two-Phase Flow of R245fa in a 1mm Corrugation Depth Plate Heat Exchanger–Part II: Flow Boiling Heat Transfer
,”
Interfacial Phenom. Heat Transfer
2
(
4
), pp.
343
361
.
32.
Amalfi
,
R. L.
,
Thome
,
J. R.
,
Solotych
,
V.
, and
Kim
,
J.
,
2016
, “
High Resolution Local Heat Transfer and Pressure Drop Infrared Measurements of Two-Phase Flow of R245fa Within a Compact Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
103
, pp.
791
806
. 10.1016/j.ijheatmasstransfer.2016.07.060
33.
Zhang
,
J.
,
Desideri
,
A.
,
Kærn
,
M. R.
,
Ommen
,
T. S.
,
Wronski
,
J.
, and
Haglind
,
F.
,
2017
, “
Flow Boiling Heat Transfer and Pressure Drop Characteristics of R134a, R1234yf and R1234ze in a Plate Heat Exchanger for Organic Rankine Cycle Units
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1787
1801
. 10.1016/j.ijheatmasstransfer.2017.01.026
34.
Ayub
,
Z. H.
,
Khan
,
T. S.
,
Salam
,
S.
,
Nawaz
,
K.
,
Ayub
,
A. H.
, and
Khan
,
M.
,
2019
, “
Literature Survey and a Universal Evaporation Correlation for Plate Type Heat Exchangers
,”
Int. J. Refrig.
,
99
, pp.
408
418
. 10.1016/j.ijrefrig.2018.09.008
35.
Kew
,
P. A.
, and
Cornwell
,
K.
,
1997
, “
Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels
,”
Appl. Therm. Eng.
,
17
(
8–10
), pp.
705
715
. 10.1016/S1359-4311(96)00071-3
36.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1967
1976
. 10.1016/j.ijheatmasstransfer.2009.12.059
37.
Lemmon
,
E.
,
Huber
,
M. L.
, and
McLinden
,
M.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Standard Reference Data Program
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
You do not currently have access to this content.