Abstract

Phase Change Materials (PCMs) are considered to be promising contenders for thermal energy storage due to their high latent heat and nearly constant temperature during the intake /release of heat. The present study focuses on providing the most suitable PCM for low temperature (40 – 80°C) heat storage applications. However, the selection of the most suitable one from the wide range of PCMs needs a thorough insight of their thermophysical properties, thermal stability, compatibility, and melting and solidification behavior. Among the PCMs available for low-temperature heat storage applications, organic PCMs stands as an attractive option. Based on melting point temperature, latent heat, cost, and ease of availability, five widely used organic PCMs, viz. lauric acid, myristic acid, stearic acid, paraffin wax, and palmitic acid are selected. Initially, thermophysical properties are measured and tabulated. Subsequently, thermal stability experiments up to 1500 melting/freezing cycles, compatibility studies with container materials (Al and SS), and melting and solidification experiments giving total melting and solidification times are performed. Further, a hybrid Multiple Attribute Decision Making (MADM) method is employed to select the best PCM based on the obtained experimental results. During the selection process at first, the subjective weights of the attributes are measured according to the Analytical Hierarchy Process (AHP). Later, the PCMs are ranked based on the Technique for Order Preference by Similarity to Ideal Solution technique (TOPSIS). The hybrid MADM results show that among the selected PCMs, paraffin wax is the optimal PCM for low-temperature heat storage applications.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.