Abstract

Liquefied petroleum gas (LPG) is commonly used in domestic kitchen due to its low health and environmental impacts and high heat content compared to other traditional fuels. The growing demand of LPG, notwithstanding its limited reserve, influences the need for performance improvement of the LPG cookstoves. In an LPG cookstove, the fuel–air mixture is prepared in a self-aspirated burner, and burns as a rich premixed flame above the burner. The fuel–air ratio of the reactant mixture influences the burning characteristics and thermal efficiency of the cookstove. This part of work deals with a numerical study of flow and mixing characteristics in the mixing tube and burner assembly of a domestic LPG cookstove. The fuel is injected axially through a narrow nozzle inside the mixing tube causing entrainment of ambient air through the side ports and the end port. The effects of different side-port geometry, nozzle position, inlet fuel pressure, and nozzle throat diameter on the air ingress have been systematically investigated, and the optimum design has been identified. Results of the study provide important information on the design of the practical nozzle and mixing tube assembly of high-efficiency LPG stoves.

References

References
1.
Purohit
,
P.
,
Kumar
,
A.
,
Rana
,
S.
, and
Kandpal
,
T. C.
,
2002
, “
Using Renewable Energy Technologies for Domestic Cooking in India: A Methodology for Potential Estimation
,”
Renewable Energy
,
26
(
2
), pp.
235
246
. 10.1016/S0960-1481(01)00127-6
2.
Malla
,
S.
, and
Timilsina
,
G. R.
,
2014
, “
Household Cooking Fuel Choice and Adoption of Improved Cookstoves in Developing Countries: A Review
”.
The World Bank
.
3.
Ramanakumar
,
A. V.
,
Parent
,
M. E.
, and
Siemiatycki
,
J.
,
2007
, “
Risk of Lung Cancer From Residential Heating and Cooking Fuels in Montreal, Canada
,”
Am. J. Epidemiol.
,
165
(
6
), pp.
634
642
. 10.1093/aje/kwk117
4.
Shrestha
,
I. L.
, and
Shrestha
,
S. L.
,
2005
, “
Indoor Air Pollution From Biomass Fuels and Respiratory Health of the Exposed Population in Nepalese Households
,”
Int. J. Occup. Environ. Health
,
11
(
2
), pp.
150
160
. 10.1179/oeh.2005.11.2.150
5.
Smith
,
K. R.
, and
Liu
,
Y.
,
1994
, “
Indoor Air Pollution in Developing Countries
,”
Epidemiol. Lung Cancer
,
74
(
7
), pp.
151
184
.
6.
Pintos
,
J.
,
Franco
,
E. L.
,
Kowalski
,
L. P.
,
Oliveira
,
B. V.
, and
Curado
,
M. P.
,
1998
, “
Use of Wood Stoves and Risk of Cancers of the Upper Aero-Digestive Tract: A Case-Control Study
,”
Int. J. Epidemiol.
,
27
(
6
), pp.
936
940
. 10.1093/ije/27.6.936
7.
WHO
,
2006
,
Fuel for Life: Household Energy and Health
,
World Health Organization
8.
Kandpal
,
J. B.
,
Maheshwari
,
R. C.
, and
Kandpal
,
T. C.
,
1995
, “
Indoor Air Pollution From Domestic Cookstoves Using Coal, Kerosene and LPG
,”
Energy Convers. Manage.
,
36
(
11
), pp.
1067
1072
. 10.1016/0196-8904(94)00087-G
9.
GOI
,
2016
, “
Pradhan Mantri Ujjwala Yojana—Scheme for Providing Free LPG Connections to Women From BPL Households
,”
Ministry of Petroleum & Natural Gas
, http://www.pmujjwalayojana.com/about.html.
10.
Thoday
,
K.
,
Benjamin
,
P.
,
Gan
,
M.
, and
Puzzolo
,
E.
,
2018
, “
The Mega Conversion Program From Kerosene to LPG in Indonesia: Lessons Learned and Recommendations for Future Clean Cooking Energy Expansion
,”
Energy Sustainable Dev.
,
46
, pp.
71
81
. 10.1016/j.esd.2018.05.011
11.
Asante
,
K. P.
,
Afari-Asiedu
,
S.
,
Abdulai
,
M. A.
,
Dalaba
,
M. A.
,
Carrión
,
D.
,
Dickinson
,
K. L.
,
Abeka
,
A. N.
,
Sarpong
,
K.
, and
Jack
,
D. W.
,
2018
, “
Ghana’s Rural Liquefied Petroleum Gas Program Scale Up: A Case Study
,”
Energy Sustainable Dev.
,
46
, pp.
94
102
. 10.1016/j.esd.2018.06.010
12.
Namkhat
,
A.
, and
Jugjai
,
S.
,
2010
, “
Primary Air Entrainment Characteristics for a Self-Aspirating Burner: Model and Experiments
,”
Energy
,
35
(
4
), pp.
1701
1708
. 10.1016/j.energy.2009.12.020
13.
Singh
,
G.
,
Sundararajan
,
T.
, and
Shet
,
U. S. P.
,
1999
, “
Entrainment and Mixing Studies for a Variable Density Confined Jet
,”
Numer. Heat Transfer, Part A
,
35
(
2
), pp.
205
224
. 10.1080/104077899275335
14.
Laphirattanakul
,
P.
, and
Charoensuk
,
J.
,
2017
, “
Effect of Central Cone-Shaped Bluff Body on Performance of Premixed LPG Burner
,”
Appl. Therm. Eng.
,
114
, pp.
98
109
. 10.1016/j.applthermaleng.2016.11.157
15.
Yang
,
X.
,
Long
,
X.
, and
Yao
,
X.
,
2012
, “
Numerical Investigation on the Mixing Process in a Steam Ejector With Different Nozzle Structures
,”
Int. J. Therm. Sci.
,
56
, pp.
95
106
. 10.1016/j.ijthermalsci.2012.01.021
16.
Singh
,
G.
,
Sundararajan
,
T.
, and
Bhaskaran
,
K. A.
,
2003
, “
Mixing and Entrainment Characteristics of Circular and Noncircular Confined Jets
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
835
. 10.1115/1.1595676
17.
Mishra
,
D. P.
,
Samantaray
,
M. K.
, and
Dash
,
S. K.
,
2014
, “
Maximum Air Entrainment Into a Mixing Pipe Through Optimum Design
,”
Ships Offshore Struct.
,
9
(
6
), pp.
605
618
. 10.1080/17445302.2014.881246
18.
Shi
,
J.
,
Ran
,
J.
,
Qin
,
C.
, and
Zhang
,
L.
,
2015
, “
Adaptive Air Distribution in an Ejector Burner for the Utilisation of Methanol-Mixed Fuels
,”
Fuel
,
162
, pp.
313
322
. 10.1016/j.fuel.2015.09.004
19.
Boggavarapu
,
P.
,
Ray
,
B.
, and
Ravikrishna
,
R. V.
,
2014
, “
Thermal Efficiency of LPG and PNG-Fired Burners: Experimental and Numerical Studies
,”
Fuel
,
116
, pp.
709
715
. 10.1016/j.fuel.2013.08.054
20.
Calcote
,
H. F.
,
Gregory
,
C. A.
,
Barnett
,
C. M.
, and
Gilmer
,
R. B.
,
1952
, “
Spark Ignition: Effect of Molecular Structure
,”
Ind. Eng. Chem.
,
44
(
11
), pp.
2656
2662
. 10.1021/ie50515a048
21.
BIS
,
2002
,
IS 4246:2002 Domestic Gas Stoves for Use With Liquefied Petroleum Gases—Specification (Fifth Revision)
.
You do not currently have access to this content.