An attempt is made here to characterize thermal conductivity of water-based Al2O3 nanofluid and then use the same in a circular finned thermosyphon (TPCT) to measure its thermal performance. The concentration of Al2O3 nanofluid is varied within 0.05–0.25% by volume. The thermal conductivity of nanofluid is increased with concentration of Al2O3 nanoparticles as well as with temperature. A maximum of 26.7% enhancement of thermal conductivity is observed at 45 °C for 0.25% concentration by volume of nanofluid in comparison to that of de-ionized (DI) water. Variations of surface tension and contact angle of Al2O3 nanofluid are also compared with DI water. One of the smallest TPCT with different heat inputs (4 W, 8 W, and 12 W) and different inclinations (30 deg, 45 deg, 60 deg, and 90 deg) is tested for different concentration of Al2O3 nanofluid, which will find application in smaller electronic units. It is found that use of nanofluid decreases the wall temperature distribution of TPCT. Thermal resistance of TPCT decreases whenever TPCT is filled with nanofluid and a maximum of 36.4% reduction in thermal resistance is noted for 0.25% volume of nanoparticles at 4 W with an inclination of 60 deg. It is also found that performance of TPCT is higher at 60 deg inclination compared to other inclinations, especially for lower heat input.

References

References
1.
Mostafizur
,
R. M.
,
Aziz
,
A. R. A.
,
Saidur
,
R.
,
Bhuiyan
,
M. H. U.
, and
Mahbubul
,
I. M.
,
2014
, “
Effect of Temperature and Volume Fraction on Rheology of Methanol Based Nano-Fluid
,”
Int. J. Heat Mass Transfer
,
77
, pp.
765
769
.
2.
Mostafizur
,
R. M.
,
Bhuiyan
,
M. H. U.
,
Saidur
,
R.
, and
Aziz
,
A.
,
2014
, “
Thermal Conductivity Variation for Methanol Based Nano-Fluid
,”
Int. J. Heat Mass Transfer
,
76
, pp.
350
356
.
3.
Mostafizur
,
R. M.
,
Saidur
,
R.
,
Aziz
,
A. R. A.
, and
Bhuiyan
,
M.
,
2015
, “
Thermophysical Properties of Methanol Based Al2O3 Nano-Fluid
,”
Int. J. Heat Mass Transfer
,
85
, pp.
414
419
.
4.
Noie
,
S. H.
,
Heris
,
S. Z.
,
Kahani
,
M.
, and
Nowee
,
S. M.
,
2009
, “
Heat Transfer Enhancement Using Al2O3/Water Nano-Fluid in a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
700
705
.
5.
Do
,
K. H.
, and
Jang
,
S. P.
,
2010
, “
Effect of Nano-Fluid on the Thermal Performance of a Flat Micro Heat Pipe With a Rectangular Grooved Wick
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2183
2192
.
6.
Kamyar
,
A.
,
Ong
,
K. S.
, and
Saidur
,
R.
,
2013
, “
Effects of Nano-Fluid on Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Mass Transfer
,
65
, pp.
610
618
.
7.
Solomon
,
A. B.
,
Roshan
,
R.
,
Vincent
,
W.
,
Karthikeyan
,
V. K.
, and
Asirvatham
,
L. G.
,
2015
, “
Heat Transfer Performance of an Anodized Two-Phase Closed Thermosyphon With Refrigerant as Working Fluid
,”
Int. J. Heat Mass Transfer
,
82
, pp.
521
529
.
8.
Huminic
,
G.
, and
Huminic
,
A.
,
2013
, “
Numerical Study on Heat Transfer Characteristics of Thermosyphon Heat Pipes Using Nano-Fluid
,”
Energy Convers. Manage.
,
76
, pp.
393
399
.
9.
Kole
,
M.
, and
Dey
,
T. K.
,
2013
, “
Thermal Performance of Screen Mesh Wick Heat Pipes Using Water-Based Copper Nano-Fluid
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
763
770
.
10.
Buschmann
,
M. H.
, and
Franzke
,
U.
,
2014
, “
Improvement of Thermosyphon Performance by Employing Nano-Fluid
,”
Int. J. Refrig.
,
40
, pp.
416
428
.
11.
Naphon
,
P.
,
Thongkum
,
D.
, and
Assadamongkol
,
P.
,
2009
, “
Heat Pipe Efficiency Enhancement With Refrigerant Nano-Particles Mixtures
,”
Energy Convers. Manage.
,
50
(
3
), pp.
772
776
.
12.
Liu
,
Z. H.
,
Hua
,
R. L.
,
Lu
,
L.
,
Zhao
,
F.
, and
Xiao
,
H.
,
2013
, “
Thermal Performance of an Open Thermosyphon Using Nano-Fluid for Evacuated Tubular High Temperature Air Solar Collector
,”
Energy Convers. Manage.
,
73
, pp.
135
143
.
13.
Ho
,
C. J.
,
Chung
,
Y. N.
, and
Lai
,
C. M.
,
2014
, “
Thermal Performance of Al2O3/Water Nano-Fluid in a Natural Circulation Loop With a Mini-Channel Heat Sink and Heat Source
,”
Energy Convers. Manage.
,
87
, pp.
848
858
.
14.
Moraveji
,
M. K.
, and
Razvarz
,
S.
,
2012
, “
Experimental Investigation of Aluminum Oxide Nano-Fluid on Heat Pipe Thermal Performance
,”
Int. Commun. Heat Mass Transfer
,
39
, pp.
1444
1448
.
15.
Ghanbarpour
,
M.
,
Nikkam
,
N.
,
Khodabandeh
,
R.
, and
Toprak
,
M. S.
,
2015
, “
Thermal Performance of Inclined Screen Mesh Heat Pipes Using Silver Nano-Fluid
,”
Int. Commun. Heat Mass Transfer
,
67
, pp.
14
20
.
16.
Putra
,
N.
,
Yanuar
, and
Iskandar
,
F. N.
,
2011
, “
Application of Nano-Fluid to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment
,”
Exp. Therm. Fluid Sci.
,
35
, pp.
1274
1281
.
17.
Hung
,
Y. H.
,
Teng
,
T. P.
, and
Lin
,
B. G.
,
2013
, “
Evaluation of the Thermal Performance of a Heat Pipe Using Alumina Nano-Fluid
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
504
511
.
18.
Solomon
,
A. B.
,
Mathew
,
A.
,
Ramachandran
,
K.
,
Pillai
,
B. C.
, and
Karthikeyan
,
V. K.
,
2013
, “
Thermal Performance of Anodized Two Phase Closed Thermosyphon (TPCT)
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
49
57
.
19.
Singh
,
R. R.
,
Selladurai
,
V.
,
Ponkarthik
,
P. K.
, and
Solomon
,
A. B.
,
2015
, “
Effect of Anodization on the Heat Transfer Performance of Flat Thermosyphon
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
574
581
.
20.
Khandekar
,
S.
,
Joshi
,
Y. M.
, and
Mehta
,
B.
,
2008
, “
Thermal Performance of Closed Two-Phase Thermosyphon Using Nano-Fluid
,”
Int. J. Therm. Sci.
,
47
(
6
), pp.
659
667
.
21.
Qu
,
J.
, and
Wu
,
H.
,
2011
, “
Thermal Performance Comparison of Oscillating Heat Pipes With SiO2/Water and Al2O3/Water Nano-Fluid
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1954
1962
.
22.
Putra
,
N.
,
Saleh
,
R.
,
Septiadi
,
W. N.
,
Okta
,
A.
, and
Hamid
,
Z.
,
2014
, “
Thermal Performance of Biomaterial Wick Loop Heat Pipes With Water-Base Al2O3 Nano-Fluid
,”
Int. J. Therm. Sci.
,
76
, pp.
128
136
.
23.
Hassan
,
M. I.
,
Alzarooni
,
I. A.
, and
Shatilla
,
Y.
,
2015
, “
The Effect of Water-Based Nanofluid Incorporating Al2O3 Nano-Particles on Heat Pipe Performance
,”
Energy Procedia
,
75
, pp.
3201
3206
.
24.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
,
2002
, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
,
91
(
7
), pp.
4568
4572
.
25.
Jang
,
S. P.
, and
Choi
,
S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nano-Fluid
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.
26.
Maxwell
,
J. M.
,
1954
,
A Treatise on Electricity and Magnetism
,
Dover Publications Inc.
,
Mineola, NY
.
27.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two Component System
,”
Ind. Eng. Chem. Fundam.
,
13
, pp.
187
191
.
28.
Timofeeva
,
E. V.
,
Gavrilov
,
A. N.
,
Closkey
,
J. M. M.
, and
Tolmachev
,
Y. V.
,
2007
, “
Thermal Conductivity and Particle Agglomeration in Aluminium Nano-Fluid: Experiment and Theory
,”
Phys. Rev. Lett.
,
76
(
6
), p.
061203
.
29.
Goedel
,
W. A.
,
2003
, “
A Simple Theory of Particle-Assisted Wetting
,”
Euro-Phys. Lett.
,
62
(
4
), pp.
607
613
.
30.
Xu
,
H.
,
Yan
,
F.
,
Tierno
,
P.
,
Marczewski
,
D.
, and
Goedel
,
W. A.
,
2005
, “
Particle Assisted Wetting
,”
J. Phys. Condensable Matter
,
17
(
9
), pp.
S465
S476
.
31.
Xu
,
Z.
,
Zhang
,
Y.
,
Li
,
B.
,
Wang
,
C.-C.
, and
Yongji
,
L.
,
2018
, “
The Influences of the Inclination Angle and Evaporator Wettability on the Heat Performance of a Thermosyphon by Simulation and Experiment
,”
Int. J. Heat Mass Transfer
,
116
, pp.
675
684
.
You do not currently have access to this content.