The ultra compact combustor (UCC) aims to increase the thrust-to-weight ratio of an aircraft gas turbine engine by decreasing the size, and thus weight, of the engine’s combustor. The configuration of the UCC as a primary combustor enables a unique cooling scheme to be employed for the hybrid guide vane (HGV). A previous effort conducted a computational fluid dynamics (CFD) analysis that evaluated whether it would be possible to cool this vane by drawing in freestream flow at the stagnation region of the airfoil. Based on this study, a cooling scheme was designed and modified with internal supports to make additive manufacturing of the vanes possible. This vane was computationally evaluated comparing the results with those of a solid vane and hollow vane without cooling holes as a demonstration of the improvements offered by this design. Furthermore, the effects of the internal support structure were deemed beneficial to surface cooling when evaluated through comparisons of internal pressure distribution and overall effectiveness. Following the computational study, the vane was manufactured and experimentally evaluated with the results compared to those of an uncooled solid vane. The experimental results validated the computational analysis and demonstrated through pressure and temperature measurements that the cooled vane had a reduced surface temperature compared to the uncooled vane and that pressure distributions supported coolant flow through film-cooling holes.

References

References
1.
Lewis
,
G. D.
,
1973
, “
Swirling Flow Combustion—Fundamentals and Application
,”
AIAA/SAE 9th Propulsion Conference
,
Las Vegas, NE
,
November
, AIAA Paper No. 73-1250.
2.
Briones
,
A. M.
,
Sekar
,
B.
, and
Erdmann
,
T. J.
,
2015
, “
Effect of Centrifugal Force on Turbulent Premixed Flames
,”
J. Eng. Gas Turbines Power
,
137
(
1
), pp.
011501
.
3.
Yonezawa
,
Y.
,
Toh
,
H.
,
Goto
,
S.
, and
Obata
,
M.
,
1990
, “
Development of the Jet-Swirl High Loading Combustor
,”
26th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Orlando, FL
, AIAA-90-2451.
4.
Sirignano
,
W. A.
, and
Liu
,
F.
,
1999
, “
Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine
,”
J. Propulsion Power
,
15
(
1
), pp.
111
118
.
5.
Cottle
,
A. E.
,
Polanka
,
M. D.
,
Goss
,
L. P.
, and
Goss
,
C. Z.
,
2016
, “
Investigation of Air Injection and Cavity Size Within a Circumferential Combustor to Increase G-Load and Residence Time
,”
J. Eng. Gas Turbines Power
,
140
(
1
), pp.
011501
.
6.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2017
, “
Computational Analysis of a Novel Cooling Scheme for Ultra Compact Combustor Turbine Vanes
,”
Proceedings of the ASME Turbo Expo 2017: Turbine Technical Conference & Exposition
,
Charlotte, NC
, GT2017-63319.
7.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
8.
Martiny
,
M.
,
Schiele
,
R.
,
Gritsch
,
M.
, and
Wittig
,
S.
,
1996
, “
In Situ Calibration for Quantitative Infrared Thermography
,”
Quant. Infr. Therm. J.
,
96
(
1
), pp.
3
8
.
9.
Bogard
,
D. G.
,
2006
, “Airfoil Film Cooling,”
The Gas Turbine Handbook
,
National Energy Technology Laboratory, Department of Energy
,
Morgantown, WV
, Sect. 4.2.2.1.
10.
Polanka
,
M. D.
,
Rutledge
,
J. L.
,
Bogard
,
D. G.
, and
Anthony
,
R. J.
,
2017
, “
Determination of Cooling Parameters for a High-Speed True-Scale, Metallic Turbine Vane
,”
ASME J. Turbomach.
,
139
(
1
), pp.
1
9
.
11.
Anderson
,
W. S.
,
Polanka
,
M. D.
,
Zelina
,
J.
,
Evans
,
D. S.
,
Stouffer
,
S. D.
, and
Justinger
,
G. R.
,
2010
, “
Effects of a Reacting Cross-Stream on Turbine Film Cooling
,”
J. Eng. Gas Turbines Power
,
132
(
5
), pp.
1
7
.
12.
Polanka
,
M. D.
,
Zelina
,
J.
,
Anderson
,
W. S.
,
Sekar
,
B.
,
Evans
,
D. S.
,
King
,
P. I.
,
Thornburg
,
H. J.
,
Lin
,
C. X.
, and
Stouffer
,
S. D.
,
2011
, “
Heat Release in Turbine Film Cooling, Part 1: Experimental and Computational Comparison of Three Geometries
,”
J. Propulsion Power
,
27
(
2
), pp.
257
268
.
13.
Shewhart
,
A. T.
,
Lynch
,
A. J.
,
Greiner
,
N. J.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2016
, “
Mitigation of Heat Release From Film Cooling in Fuel Rich Environments
,”
J. Propulsion Power
,
32
(
6
), pp.
1454
1461
.
14.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2017
, “
Development and Testing of a Variable Geometry Diffuser in an Ultra-Compact Combustor
,”
Proceedings of AIAA SciTech 2017
,
Grapevine, TX
, AIAA 2017-0777.
15.
Briones
,
A. M.
,
Burrus
,
D. L.
,
Erdmann
,
T. J.
, and
Shouse
,
D. T.
,
2015
, “
Effect of Centrifugal Force on the Performance of High-G Ultra Compact Combustor
,”
Proceedings of ASME Turbo Expo
,
Montreal, Canada
, GT 2015-43445.
16.
Cottle
,
A. E.
,
2016
, “
Flow Field Dynamics in a High-G Ultra-Compact Combustor
,” Ph.D. thesis,
Air Force Institute of Technology
,
WPAFB, OH
.
17.
Cottle
,
A. E.
, and
Polanka
,
M. D.
,
2016
, “
Numerical and Experimental Results From a Common-Source High-G Ultra-Compact Combustor
,”
Proceedings of the ASME Turbo Expo 2016
, GT2016-56215.
18.
ANSYS, Inc
,
2016
.
FLUENT 16.2 User’s Guide
,
Canonsburg, PA
.
19.
Tu
,
J.
,
Yeoh
,
G. H.
, and
Liu
,
C.
,
2008
,
Computational Fluid Dynamics—A Practical Approach
,
Elsevier Publishing
,
Burlington, MA
, pp.
258
.
20.
Zhang
,
Y.
,
Duda
,
T.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Copeland
,
C. D.
, and
Redwood
,
A.
,
2018
, “
Design of an Air-Cooled Radial Turbine Part 1: Experimental Measurements of Heat Transfer
,”
Proceedings of the ASME Turbo Expo 2018: Turbine Technical Conference & Exposition
,
Oslo, Norway
, GT2018-76384.
21.
Zhang
,
Y.
,
Duda
,
T.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Copeland
,
C. D.
, and
Redwood
,
A.
,
2018
, “
Design of an Air-Cooled Radial Turbine Part 2: Computational Modeling
,”
Proceedings of the ASME Turbo Expo 2018: Turbine Technical Conference & Exposition
,
Oslo, Norway
, GT2018-76378.
You do not currently have access to this content.