This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.

References

1.
MME–Ministério de Minas e Energia
,
2015
, “
Boletim Mensal de Energia (Maio 2015)
,” Brasília, Brazil, accessed Aug. 31, 2015, http://goo.gl/s2rFEL
2.
SINDIGAS
,
2015
, “
Preço do gás de Cozinha vai ter Aumento Médio de 15%, diz Sindigás
,” SINDIGAS, Rio de Janeiro, Brazil, accessed Sept. 15, 2015, http://www.sindigas.com.br/noticia/interna.aspx?id=7945
3.
ABNT-Associação Brasileira de Normas Técnicas
,
2011
, “
NBR 13.148: Fogões, Fogões de Mesa, Fornos e Fogareiros a gás de uso Industrial—Terminologia
,” ABNT, São Paulo, Brazil, p.
58
.
4.
Turns
,
S. R.
,
2013
,
Introdução à Combustão: Conceitos e Aplicações
, 3rd ed.,
AMGH
,
Porto Alegre, Brazil
.
5.
Hou
,
S.-S.
,
Lee
,
C.-Y.
, and
Lin
,
T.-H.
,
2007
, “
Efficiency and Emissions of a New Domestic Gas Burner With a Swirling Flame
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1401
1410
.
6.
Li
,
H. B.
, Wong, T. T., Leung, C. W., and Probert, S. D.,
2006
, “
Thermal Performances and CO Emissions of Gas-Fired Cooker-Top Burners
,”
Appl. Energy
,
83
(
12
), pp.
1326
1338
.
7.
Zhang
,
Y.
,
Qin
,
C.
,
Xing
,
H.
, and
Liu
,
P.
,
2013
, “
Experimental Research on Performance Response of Domestic Gas Cookers to Variable Natural Gas Constituents
,”
J. Nat. Gas Sci. Eng.
,
10
(
1
), pp.
41
50
.
8.
Ko
,
Y.-C.
, and
Lin
,
T.-H.
,
2003
, “
Emissions and Efficiency of a Domestic Gas Stove Burning Natural Gases With Various Compositions
,”
Energy Convers. Manage.
,
44
(
19
), pp.
3001
3014
.
9.
INMETRO–Instituto Nacional de Metrologia, Qualidade e Tecnologia
,
2012
, “
Portaria 400/2012—Requisitos de Avaliação da Conformidade Para Fogões e Fornos a gás de uso Doméstico
,” INMETRO, Rio de Janeiro, Brazil, p.
3
.
10.
PETROBRÁS
,
2013
, “
Gás Liquefeito de Petróleo–Informações Técnicas (Versão 1.2)
,” PETROBRAS, Rio de Janeiro, Brazil, accessed Sept. 15, 2015, http://sites.petrobras.com.br/minisite/assistenciatecnica/public/downloads/manual-tecnico-gas-liquefeito-petrobras-assistencia-tecnica-petrobras.pdf
11.
Yaws
,
C. L.
,
2001
,
Matheson Gas Data Book
, 7th ed.,
McGraw-Hill Professional
, Parsippany, NJ, p.
982
.
12.
Balbinot
,
A.
, and
Brusamarello
,
V. J.
,
2010
,
Instrumentação e Fundamentos de Medidas
, 2nd ed., Vol.
1
,
LTC
,
Rio de Janeiro, Brazil
, p.
385
.
13.
ABNT-Associação Brasileira de Normas Técnicas
,
2003
, “
NBR 13723-1: Aparelho Doméstico de Cocção a gás Parte 1: Desempenho e Segurança
,” ABNT, São Paulo, Brazil, p.
58
.
14.
ABNT–Associação Brasileira de Normas Técnicas
,
1999
, “
NBR 13723-2: Aparelho Doméstico de Cocção a gás Parte 2: Uso Racional de Energia
,” ABNT, São Paulo, Brazil, p.
3
.
15.
Garcia
,
R.
,
2002
,
Combustíveis e Combustão Industrial
, 1st ed.,
Interciência
,
Rio de Janeiro, Brazil
.
16.
Rocha
,
M. S.
,
Neto
,
E. P.
,
Panella
,
L. S.
,
Ferreira
,
E. S.
, and
Moreira
,
J. R. S.
,
2010
, “
Conversion Methods for Commercial Stoves From LPG to Natural Gas Firing
,”
13th Brazilian Congress of Thermal Sciences and Engineering—ENCIT
, Uberlândia, Brazil, Dec. 5–10, p.
7
.
17.
Makmool
,
U.
, and
Jugjai
,
S.
,
2013
, “
Thermal Efficiency and Pollutant Emissions of Domestic Cooking Burners Using DME-LPG Blends as a Fuel
,”
Fourth TSME International Conference on Mechanical Engineering
, Parraya, Chonburi, Oct. 16–18, p.
8
.
18.
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Wong
,
T. T.
,
2014
, “
Improvement of Domestic Cooking Flames by Utilizing Swirling Flows
,”
Fuel
,
119
(
1
), pp.
153
156
.
19.
ISO–International Organization for Standardization
,
2011
, “
Safety and Control Devices for Gas Burners and Gas-Burning Appliances—General Requirements
,” ISO, Geneva, Switzerland, p.
41
, Standard No.
ISO 23550:2011
.
20.
ATLAS
, 2015, “
Fogão Tropical Plus 4 Bocas
,” ATLAS, Pato Branco, Brazil, accessed Sept. 15, 2015, http://www.atlas.ind.br/site/pt/produtos/49/fogao-a-gas-tropical-plus-4-bocas
21.
Nabi
,
M. N.
,
2010
, “
Theoretical Investigation of Engine Thermal Efficiency, Adiabatic Flame Temperature, NOx Emission and Combustion-Related Parameters for Different Oxygenated Fuels
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
839
844
.
22.
Nogueira
,
L. A. H.
,
Cardoso
,
R. B.
,
Cavalcanti
,
C. Z. B.
, and
Leonelli
,
P. A.
,
2015
, “
Evaluation of the Energy Impacts of the Energy Efficiency Law in Brazil
,”
Energy Sustainable Dev.
,
24
(
1
), pp.
58
69
.
You do not currently have access to this content.