This numerical study has been carried out by developing two-phase mixture model with conjugate heat transfer. Pure and hybrid nanofluids (HyNF) with particle as well as base fluid hybridization are used in analyzing the performance of microchannel under forced convection laminar flow. The flow as well as heat transfer characteristics of pure water, copper (Cu), aluminum (Al), single-walled carbon nanotube (SWCNT), and hybrid (Cu + Al, water + methanol) nanofluids with various nanoparticle volume concentrations at different Reynolds numbers are reported. Sphericity-based effective thermal conductivity evaluation is considered in the case of SWCNT nanofluids by using volume and surface area of nanotubes. A significant enhancement in the average Nusselt number is observed numerically for both pure and hybrid nanofluids. Pure nanofluids such as Al, Cu, and SWCNT with 3 vol % nanoparticle concentration enhanced the average Nusselt number by 21.09%, 32.46%, and 71.25% in comparison with pure water at Re = 600. Whereas, in the case of hybrid nanofluids such as 3 vol % HyNF (0.6% Cu + 2.4% Al) and 3 vol % SWCNT (20% Me + 80% PW), the enhancement in average Nusselt number is observed to be 23.38% and 46.43% in comparison with pure water at Re = 600. The study presents three equivalent combinations of nanofluids (1 vol % Cu and 0.5 vol % SWCNT), (2 vol % Cu, 1 vol % SWCNT and 3 vol % HyNF (0.6% Cu + 2.4% Al)) as well as (2 vol % SWCNT and 3 vol % SWCNT (20% Me + 80% PW)) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The study also shows that by dispersing SWCNT nanoparticles, one can enhance the heat transfer characteristics of base fluid containing methanol as antifreeze. The conduction phenomena of solid region cause the interface temperature between solid as well as fluid regions to increase along the length of the microchannel. The developed numerical model is validated with the numerical and experimental results available in the literature.

References

References
1.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
,
2004
, “
Microchannel Heat Sinks: An Overview of the State-of-the-Art
,”
Microscale Thermophys. Eng.
,
8
(
3
), pp.
183
205
.
2.
Tuckerman
,
D. B.
, and
Pease
,
F. R.
,
1983
, “
Microcapillary Thermal Interface Technology for VLSI Packaging
,”
Digest of Technical Papers—Symposium on VLSI Technology
, Maui, HI, Sept. 13–15, pp.
60
61
.
3.
Tuckerman
,
D. B.
,
1984
, “
Heat Transfer Microstructures for Integrated Circuits
,”
Ph.D. thesis
, Stanford University, Stanford, CA.
4.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
5.
Rafati
,
M.
,
Hamidi
,
A. A.
, and
Shariati Niaser
,
M.
,
2012
, “
Application of Nanofluids in Computer Cooling Systems (Heat Transfer Performance of Nanofluids)
,”
Appl. Therm. Eng.
,
45–46
, pp.
9
14
.
6.
Azmi
,
W. H.
,
Abdul Hamid
,
K.
,
Usri
,
N. A.
,
Mamat
,
R.
, and
Sharma
,
K. V.
,
2016
, “
Heat Transfer Augmentation of Ethylene Glycol: Water Nanofluids and Applications: A Review
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
13
23
.
7.
Beck
,
M. P.
,
Sun
,
T.
, and
Teja
,
A. S.
,
2007
, “
The Thermal Conductivity of Alumina Nanoparticles Dispersed in Ethylene Glycol
,”
Fluid Phase Equilib.
,
260
(
2
), pp.
275
278
.
8.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
,
2010
, “
The Thermal Conductivity of Alumina Nanofluids in Water, Ethylene Glycol, and Ethylene Glycol + Water Mixtures
,”
J. Nanopart. Res.
,
12
(
4
), pp.
1469
1477
.
9.
Garg
,
J.
,
Poudel
,
B.
,
Chiesa
,
M.
,
Gordon
,
J. B.
,
Ma
,
J. J.
,
Wang
,
J. B.
,
Ren
,
Z. F.
,
Kang
,
Y. T.
,
Ohtani
,
H.
,
Nanda
,
J.
,
McKinley
,
G. H.
, and
Chen
,
G.
,
2008
, “
Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid
,”
J. Appl. Phys.
,
103
(
7
), p.
074301
.
10.
Xing
,
M.
,
Yu
,
J.
, and
Wang
,
R.
,
2015
, “
Thermo-Physical Properties of Water-Based Single Walled Carbon Nanotube Nanofluid as Advanced Coolant
,”
Appl. Therm. Eng.
,
87
, pp.
344
351
.
11.
Vafaei
,
S.
, and
Wen
,
D.
,
2010
, “
Convective Heat Transfer of Alumina Nanofluids in a Microchannel
,”
ASME
Paper No. IHTC14-22206.
12.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
(
9
), pp.
2189
2195
.
13.
Li
,
Q.
, and
Xuan
,
Y.
,
2004
, “
Flow and Heat Transfer Performances of NANOFLUIDS Inside Small Hydraulic Diameter Flat Tube
,”
J. Eng. Thermophys.
,
25
(
2
), pp.
305
307
.
14.
Azizi
,
Z.
,
Alamdari
,
A.
, and
Malayeri
,
M. R.
,
2016
, “
Thermal Performance and Friction Factor of a Cylindrical Microchannel Heat Sink Cooled by Cu-Water Nanofluid
,”
Appl. Therm. Eng.
,
99
, pp.
970
978
.
15.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
2
), pp.
240
250
.
16.
Lotfi
,
R.
,
Rashidi
,
A. M.
, and
Amrollahi
,
A.
,
2012
, “
Experimental Study on the Heat Transfer Enhancement of MWNT-Water Nanofluid in a Shell and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
108
111
.
17.
Saberi
,
M.
,
Kalbasi
,
M.
, and
Alipourzade
,
A.
,
2013
, “
Numerical Study of Forced Convective Heat Transfer of Nanofluids Inside a Vertical Tube
,”
Int. J. Therm. Technol.
,
3
(
1
), pp.
10
15
.
18.
Meng
,
X.
, and
Li
,
Y.
,
2015
, “
Numerical Study of Natural Convection in a Horizontal Cylinder Filled With Water-Based Alumina Nanofluid
,”
Nanoscale Res. Lett.
,
10
, pp.
1
10
.
19.
Bhadouriya
,
R.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
,
2015
, “
Experimental and Numerical Study of Fluid Flow and Heat Transfer in a Twisted Square Duct
,”
Int. J. Heat Mass Transfer
,
82
, pp.
143
158
.
20.
Hasan
,
M. I.
,
2014
, “
Investigation of Flow and Heat Transfer Characteristics in Micro Pin Fin Heat Sink With Nanofluid
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
598
607
.
21.
Hasan
,
M. I.
,
Rageb
,
A. M. A.
, and
Yaghoubi
,
M.
,
2012
, “
Investigation of a Counter Flow Microchannel Heat Exchanger Performance With Using Nanofluid as a Coolant
,”
J. Electron. Cool. Therm. Control
,
2
(
3
), pp.
35
43
.
22.
Dietz
,
C. R.
, and
Joshi
,
Y. K.
,
2008
, “
Single-Phase Forced Convection in Microchannels With Carbon Nanotubes for Electronics Cooling Applications
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
3
), pp.
251
271
.
23.
Saghir
,
M. Z.
,
Ahadi
,
A.
,
Yousefi
,
T.
, and
Farahbakhsh
,
B.
,
2016
, “
Two-Phase and Single Phase Models of Flow of Nanofluid in a Square Cavity: Comparison With Experimental Results
,”
Int. J. Therm. Sci.
,
100
, pp.
372
380
.
24.
Kalteh
,
M.
,
Abbassi
,
A.
,
Saffar-Avval
,
M.
, and
Harting
,
J.
,
2011
, “
Eulerian–Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Microchannel
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
107
116
.
25.
Singh
,
P. K.
,
Harikrishna
,
P. V.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Experimental and Numerical Investigation of Flow of Nanofluids in Microchannels
,”
ASME
Paper No. IHTC14-22474.
26.
Singh
,
P. K.
,
Harikrishna
,
P. V.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2011
, “
Experimental and Numerical Investigation Into the Heat Transfer Study of Nanofluids in Microchannel
,”
ASME J. Heat Transfer
,
133
(
12
), p.
121701
.
27.
Nimmagadda
,
R.
, and
Venkatasubbaiah
,
K.
,
2015
, “
Conjugate Heat Transfer Analysis of Micro-Channel Using Novel Hybrid Nanofluids (Al2O3 + Ag/Water)
,”
Eur. J. Mech. B
,
52
, pp.
19
27
.
28.
Labib
,
M. N.
,
Nine
,
M. J.
,
Afrianto
,
H.
,
Chung
,
H.
, and
Jeong
,
H.
,
2013
, “
Numerical Investigation on Effect of Base Fluids and Hybrid Nanofluid in Forced Convective Heat Transfer
,”
Int. J. Therm. Sci.
,
71
, pp.
163
171
.
29.
Derakhshan
,
M. M.
, and
Akhavan-Behabadi
,
M. A.
,
2016
, “
Mixed Convection of MWCNT-Heat Transfer Oil Nanofluid Inside Inclined Plain and Microfin Tubes Under Laminar Assisted Flow
,”
Int. J. Therm. Sci.
,
99
, pp.
1
8
.
30.
Halelfadl
,
S.
,
Adham
,
A. M.
,
Mohd-Ghazali
,
N.
,
Mare
,
T.
,
Estelle
,
P.
, and
Ahmad
,
R.
,
2014
, “
Optimization of Thermal Performances and Pressure Drop of Rectangular Microchannel Heat Sink Using Aqueous Carbon Nanotubes Based Nanofluid
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
492
499
.
31.
Aqel
,
A.
,
Abou El-Nour
,
K. M. M.
,
Ammar
,
R. A. A.
, and
Al-Warthan
,
A.
,
2012
, “
Carbon Nanotubes, Science and Technology—Part I: Structure, Synthesis and Characterisation
,”
Arabian J. Chem.
,
5
(
1
), pp.
1
23
.
32.
Pan
,
Z. W.
,
Xie
,
S. S.
,
Chang
,
B. H.
,
Wang
,
C. Y.
,
Lu
,
L.
,
Liu
,
W.
,
Zhou
,
W. Y.
,
Li
,
W. Z.
, and
Qian
,
L. X.
,
1998
, “
Very Long Carbon Nanotubes
,”
Nature
,
394
(
6694
), pp.
631
632
.
33.
Nimmagadda
,
R.
, and
Venkatasubbaiah
,
K.
,
2016
, “
Numerical Investigation on Conjugate Heat Transfer Performance of Micro-Channel Using Sphericity Based Gold and Carbon Nanoparticles
,”
Heat Transfer Eng.
,
38
(
1
), pp.
87
102
.
34.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
35.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
36.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
.
37.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
38.
Patel
,
H. E.
,
Sundararajan
,
T.
,
Pradeep
,
T.
,
Dasgupta
,
A.
,
Dasgupta
,
N.
, and
Das
,
S. K.
,
2005
, “
A Micro-Convection Model for Thermal Conductivity of Nanofluids
,”
Pramana
,
65
(
5
), pp.
863
869
.
39.
Moraveji
,
M. K.
, and
Ardehali
,
R. M.
,
2013
, “
CFD Modeling (Comparing Single and Two-Phase Approaches) on Thermal Performance of Al2O3/Water Nanofluid in Mini-Channel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
44
(
1
), pp.
157
164
.
40.
Hejazian
,
M.
,
Moraveji
,
M. K.
, and
Beheshti
,
A.
,
2014
, “
Comparative Study of Euler and Mixture Models for Turbulent Flow of Al2O3 Nanofluid Inside a Horizontal Tube
,”
Int. Commun. Heat Mass Transfer
,
52
(
3
), pp.
152
158
.
41.
Behzadmehr
,
A.
,
Saffar Avval
,
M.
, and
Galanis
,
N.
,
2007
, “
Prediction of Turbulent Forced Convection of a Nanofluid in a Tube With Uniform Heat Flux Using a Two Phase Approach
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
211
219
.
42.
Sarhan Musa
,
M.
,
2014
,
Nanoscale Flow: Advances, Modeling, and Applications
,
Taylor & Francis
,
Boca Raton, FL
.
43.
Manninen
,
M.
,
Taivassalo
,
V.
, and
Kallio
,
S.
,
1996
,
On the Mixture Model for Multiphase Flow
, Vol.
288
,
VTT Publications
, Espoo, Finland, pp.
3
67
.
44.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Ver. Deutsch. Ing.
,
77
, pp.
318
320
.
45.
Cheng
,
L.
, and
Armfield
,
S.
,
1995
, “
A Simplified Marker and Cell Method for Unsteady Flows on Non-Staggered Grids
,”
Int. J. Numer. Methods Fluids
,
21
(
1
), pp.
15
34
.
46.
Harish
,
R.
, and
Venkatasubbaiah
,
K.
,
2014
, “
Numerical Investigation of Instability Patterns and Nonlinear Buoyant Exchange Flow Between Enclosures by Variable Density Approach
,”
Comput. Fluids
,
96
(
1
), pp.
276
287
.
47.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
48.
Yu
,
B.
,
Tao
,
W.-Q.
, and
Wei
,
J.-J.
,
2002
, “
Discussion on Momentum Interpolation Method for Collocated Grids of Incompressible Flow
,”
Numer. Heat Transfer, Part B
,
42
(
2
), pp.
141
166
.
49.
Kalteh
,
M.
,
Abbassi
,
A.
,
Saffar-Avval
,
M.
,
Frijns
,
A.
,
Darhuber
,
A.
, and
Harting
,
J.
,
2012
, “
Experimental and Numerical Investigation of Nanofluid Forced Convection Inside a Wide Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
36
, pp.
260
268
.
You do not currently have access to this content.