The present work is aimed to examine how the heat transfer coefficient (HTC) and main three-dimensional (3D) passage aerodynamic features may be affected by a nonadiabatic wall temperature condition. A systematic computational study has been first carried out for a 3D nozzle guide vane (NGV) passage. The impacts of wall temperature on the secondary flows, trailing edge shock waves, and the passage flow capacity are discussed, underlining the connection and interactions between the wall temperature and the external aerodynamics of the 3D passage. The local discrepancies in HTC in these 3D flow regions can be as high as 30–40% when comparing low and high temperature ratio cases. The effort is then directed to a new three-point nonlinear correction method. The benefit of the three-point method in reducing errors in HTC is clearly demonstrated. A further study illustrates that the new method also offers much enhanced robustness in the wall heat flux scaling, particularly relevant when the wall thermal condition is also shown to influence the laminar–turbulent transition exhibited by two well-established transition models adopted in the present work.

References

1.
Moffat
,
R. J.
,
1998
, “
What's New in Convective Heat Transfer?
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.
2.
Kays
,
W.
, and
Crawford
,
M.
,
1981
,
Convective Heat and Mass Transfer
, 2nd ed.,
McGraw-Hill
, New York.
3.
Fitt
,
A.
,
Forth
,
C.
,
Robertson
,
B.
, and
Jones
,
T.
,
1986
, “
Temperature Ratio Effects in Compressible Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
29
(
1
), pp.
159
164
.
4.
Eckert
,
E.
,
1955
, “
Engineering Relations for Friction and Heat Transfer to Surfaces in High Velocity Flow
,”
J. Aeronaut. Sci.
,
22
(
8
), pp.
585
587
.
5.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Advances in Heat Transfer
, Vol.
6
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Academic Press
, New York, pp.
503
564
.
6.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines
,”
J. Propul. Power
,
30
(
4
), pp.
1080
1090
.
7.
Zhang
,
Q.
, and
He
,
L.
,
2014
, “
Impact of Wall Temperature on Turbine Blade Tip Aerothermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052602
.
8.
Starke
,
C.
,
Janke
,
E.
,
Hofer
,
T.
, and
Lengani
,
D.
,
2008
, “
Comparison of a Conventional Thermal Analysis of a Turbine Cascade to a Full Conjugate Heat Transfer Computation
,”
ASME
Paper No. GT2008-51151.
9.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
, and
Laskowski
,
G. M.
,
2011
, “
The Effects of Conjugate Heat Transfer on the Thermal Field Above a Film Cooled Wall
,”
ASME
Paper No. GT2011-46617.
10.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane
,”
ASME J. Turbomach.
,
134
(
6
), p.
061004
.
11.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Use of the Adiabatic Wall Temperature in Film Cooling to Predict Wall Heat Flux and Temperature
,”
ASME
Paper No. GT2008-51424.
12.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
ASME
Paper No. GT2003-38369.
13.
Liepmann
,
H. W.
, and
Fila
,
G. H.
,
1947
, “
Investigation of Effects of Surface Temperature and Single Roughness Elements on Boundary-Layer Transition
,” Technical Report, NACA Report No. 890.
14.
Rued
,
K.
, and
Wittig
,
S.
,
1986
, “
Laminar and Transitional Boundary Layer Structures in Accelerating Flow With Heat Transfer
,”
ASME J. Turbomach.
,
108
(
1
), pp.
116
123
.
15.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R.
,
2007
, “
Numerical Study of the Heat Transfer in Micro Gas Turbines
,”
ASME J. Turbomach.
,
129
(
4
), pp.
835
841
.
16.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
,
2003
, “
Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane
,”
ASME
Paper No. GT2003-38553.
17.
He
,
L.
, and
Oldfield
,
M.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.
18.
Chana
,
K.
,
Patel
,
T.
, and
Mole
,
A.
,
2001
, “
A Summary of Measurements With a Non-Uniform Inlet Temperature Profile From the MT1 Single Stage HP Turbine
,” TATEF Project No. BRPR-CT97-0519.
19.
Rahim
,
A.
,
Khanal
,
B.
,
He
,
L.
, and
Romero
,
E.
,
2014
, “
Effect of Nozzle Guide Vane Lean Under Influence of Inlet Temperature Traverse
,”
ASME J. Turbomach.
,
136
(
7
), p.
071002
.
20.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-0439.
21.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
22.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
23.
Lad
,
B.
,
He
,
L.
, and
Romero
,
E.
,
2012
, “
Validation of the Immersed Mesh Block (IMB) Approach Against the Cooled MT1 NGV Application for Mesh Dependency Studies
,”
ASME
Paper No. GT2012-68779.
24.
Menter
,
F. R.
,
Langtry
,
R.
,
Likki
,
S.
,
Suzen
,
Y.
,
Huang
,
P.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
25.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121401
.
26.
Back
,
L.
,
Cuffel
,
R.
, and
Massier
,
P.
,
1969
, “
Laminar, Transition, and Turbulent Boundary-Layer Heat-Transfer Measurements With Wall Cooling in Turbulent Airflow Through a Tube
,”
ASME J. Heat Transfer
,
91
(
4
), pp.
477
487
.
27.
Reshotko
,
E.
, and
Tumin
,
A.
,
2004
, “
Role of Transient Growth in Roughness-Induced Transition
,”
AIAA J.
,
42
(
4
), pp.
766
770
.
You do not currently have access to this content.