The effect of the electric field on laminar nonpremixed counterflow propane flames was analyzed computationally. The computations were conducted using ANSYS fluent platform associated with a detailed kinetic mechanism. The mechanism was supplemented with a set of three reactions accounting for the consumption/production of three chemi-ions. It was established that the position of the flame could be only controlled through altering the intensity of the applied electric field. The effect of the applied electric field was included within the reactive flow equations via introducing two distinct terms: a body force term that accounts for the electric field effects on the momentum of the reactive mixture, and an extra diffusion term that accounts for the mobility charged species, namely ambipolar diffusion. This study clearly shows that electric force provides a potential for controlling the location of propane flames without affecting their structure.

References

1.
Lewis
,
B.
,
1931
, “
The Effect of an Electric Field on Flames and Their Propagation
,”
J. Am. Chem. Soc.
,
53
(
4
), pp.
1304
1313
.
2.
Calcote
,
H. F.
,
1957
, “
Mechanisms for the Formation of Ions in Flames
,”
Combust. Flame
,
1
(
4
), pp.
385
403
.
3.
Liñán
,
A.
,
1974
, “
The Asymptotic Structure of Counterflow Diffusion Flames for Large Activation Energies
,”
Acta Astronaut.
,
1
(
7
), pp.
1007
1039
.
4.
Goodings
,
J. M.
,
Bohme
,
D. K.
, and
Ng
,
C. W.
,
1979
, “
Detailed Ion Chemistry in Methane-Oxygen Flames—I: Positive Ions
,”
Combust. Flame
,
36
(
1
), pp.
27
43
.
5.
Goodings
,
J. M.
,
Bohme
,
D. K.
, and
Ng
,
C. W.
,
1979
, “
Detailed Ion Chemistry in Methane-Oxygen Flames—II: Negative Ions
,”
Combust. Flame
,
36
(
1
), pp.
45
62
.
6.
Rickard
,
M.
,
Dunn-Rankin
,
D.
,
Weinberg
,
F.
, and
Carleton
,
F.
,
2005
, “
Characterization of Ionic Wind Velocity
,”
J. Electrost.
,
63
(
6
), pp.
711
716
.
7.
Karnani
,
S.
, and
Dunn-Rankin
,
D.
,
2015
, “
Detailed Characterization of DC Electric Field Effects on Small Non-Premixed Flames
,”
Combust. Flame
,
162
(
7
), pp.
2865
2872
.
8.
Kim
,
M. K.
,
Chung
,
S. H.
, and
Kim
,
H. H.
,
2012
, “
Effect of Electric Fields on the Stabilization of Premixed Laminar Bunsen Flames at Low AC Frequency: Bi-Ionic Wind Effect
,”
Combust. Flame
,
159
(
3
), pp.
1151
1159
.
9.
Gomez
,
A.
,
Berry
,
J.
,
Roychoudhury
,
S.
, and
Huth
,
J.
,
2005
, “
Palm Power: Using Combustion at Small Scales and A Free Piston Stirling Engine to Replace Batteries
,”
ASME
Paper No. IMECE2005-82801.
10.
Sakhrieh
,
A.
,
Lins
,
G.
,
Dinkeacker
,
F.
,
Hammer
,
T.
,
Leipertz
,
A.
, and
Branston
,
D. W.
,
2005
, “
The Influence of Pressure on the Control of Premixed Turbulent Flames Using an Electric Field
,”
Combust. Flame
,
143
(
3
), pp.
313
322
.
11.
Kim
,
M. K.
,
Chung
,
S. H.
, and
Kim
,
H. H.
,
2011
, “
Effect of AC Electric Fields on the Stabilization of Premixed Bunsen Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1137
1144
.
12.
Belhi
,
M.
,
Domingo
,
P.
, and
Vervish
,
P.
,
2010
, “
Direct Numerical Simulation of the Effect of an Electric Field on Flame Stability
,”
Combust. Flame
,
157
(
12
), pp.
2286
2297
.
13.
Guerra-Garcia
,
C.
, and
Martinez-Sanchez
,
M.
,
2015
, “
Counterflow Nonpremixed Flame DC Displacement Under AC Electric Field
,”
Combust. Flame
,
162
(
11
), pp.
4254
4263
.
14.
Farraj
,
A. D.
,
Rajasegar
,
R.
,
Al-Khateeb
,
A. N.
, and
Kyritsis
,
D. C.
,
2015
, “
Phenomenology of Electrostatically Manipulated Laminar Counterflow Non-Premixed Methane Flames
,”
J. Energy Eng.
,
142
(
2
), p.
E4015013
.
15.
Starik
,
A.
, and
Titova
,
N.
,
2002
, “
Kinetics of Ion Formation in the Volumetric Reaction of Methane With Air
,”
Combust., Explos. Shock Waves
,
38
(
3
), pp.
253
268
.
16.
Calcote
,
H.
,
1961
, “
Ion Production and Recombination in Flames
,”
Symp. (Int.) Combust.
,
8
(
1
), pp.
184
199
.
17.
Peeters
,
J.
, and
Vinckier
,
C.
,
1975
, “
Production of Chemi-Ions and Formation of CH and CH2 Radicals in Methane-Oxygen and Ethylene-Oxygen Flames
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
969
977
.
18.
Fialkov
,
A.
,
Kalinich
,
K.
, and
Fialkov
,
B.
,
1992
, “
Experimental Determination of Primary Ions in Flame
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
785
791
.
19.
Brown
,
R.
, and
Eraslan
,
A.
,
1988
, “
Simulation of Ionic Structure in Lean and Close-to-Stoichiometric Acetylene Flames
,”
Combust. Flame
,
73
(
1
), pp.
1
21
.
20.
Reaction Design,
2013
, “
CHEMKIN-CFD for FLUENT 20112
,” Reaction Design, San Diego, CA.
21.
Fialkov
,
A. B.
,
1997
, “
Investigations on Ions in Flames
,”
Prog. Energy Combust. Sci.
,
23
(
5–6
), pp.
399
528
.
22.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2015
, “
GRI-Mech 3.0
,” Gas Research Institute, Chicago, IL, accessed May 2015, http://www.me.berkeley.edu/gri_mech/
23.
Najm
,
H.
,
Paul
,
P.
,
Mueller
,
C.
, and
Wyckoff
,
P.
,
1998
, “
On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate
,”
Combust. Flame
,
113
(
3
), pp.
312
332
.
You do not currently have access to this content.