In this paper, we provide a numerical study of the stability analysis of a planar premixed flame. The interaction of preferential diffusion and heat loss for a planar premixed flame is investigated using a thermodiffusive (constant density) model. The flame is studied as a function of three nondimensional parameters, namely, Damköhler number (ratio of diffusion time to chemical time), Lewis number (ratio of thermal to species diffusivity), and heat loss. A maximum of four solutions are identified in some cases, two of which are stable. The behavior of the eigenvalues of the linearized system of stabilty is also discussed. For low Lewis number, the heat loss plays a major role in stabilizing the flame for some moderately high values of Damköhler number. The results show the effect of increasing or decreasing Lewis number on adiabatic and nonadiabatic flames temperature and reaction rate as well as the range of heat loss at which flames can survive.

References

References
1.
Sharpe
,
G. J.
,
2003
, “
Linear Stability of Planar Premixed Flames: Reactive Navier–Stokes Equations With Finite Activation Energy and Arbitrary Lewis Numbers
,”
Combust. Theory Modell.
,
7
(
1
), pp.
45
65
.
2.
Dold
,
J. W.
,
Thatcher
,
R. W.
,
Omon-Arancibia
,
A.
, and
Redman
,
J.
,
2002
, “
From One-Step to Chain-Branching Premixed Flame Asymptotics
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1519
1526
.
3.
Joulin
,
G.
, and
Clavin
,
P.
,
1979
, “
Linear Stability Analysis of Non-Adiabatic Flames: Diffusional Thermal Model
,”
Combust. Flame
,
35
, pp.
139
153
.
4.
Thatcher
,
R. W.
, and
Al Sarairah
,
E.
,
2007
, “
Steady and Unsteady Flame Propagation in a Premixed Counterflow
,”
Combust. Theory Modell.
,
11
(
4
), pp.
569
583
.
5.
Kurdyumov
,
V. N.
, and
Fernàndez-Tarrazo
,
E.
,
2002
, “
Lewis Number Effect on the Propagation of Premixed Laminar Flames in Narrow Open Ducts
,”
Combust. Flame
,
128
(
4
), pp.
382
394
.
6.
Daou
,
R.
,
Daou
,
J.
, and
Dold
,
J.
,
2003
, “
The Effect of Heat Loss on Flame-Edges in a Premixed Counterflow
,”
Combust. Theory Modell.
,
7
(
2
), pp.
221
242
.
7.
Buckmaster
,
J.
, and
Short
,
M.
,
1999
, “
Cellular Instabilities, Sublimit Structures and Edge-Flames in Premixed Counterflows
,”
Combust. Theory Modell.
,
3
(
1
), pp.
199
214
.
8.
Thatcher
,
R. W.
,
Omon-Arancibia
,
A. A.
, and
Dold
,
J. W.
,
2002
, “
Oscillatory Flame Edge Propagating, Isolated Flame Tubes and Stability in a Non-Premixed Counterflow
,”
Combust. Theory Modell.
,
6
(
3
), pp.
487
502
.
9.
Vance
,
R.
,
Miklavcic
,
M.
, and
Wichman
,
I. S.
,
2001
, “
On the Stability of One-Dimensional Diffusional Flames Established Between Plane, Parallel, Porous Walls
,”
Combust. Theory Modell.
,
5
(
2
), pp.
147
161
.
10.
Buckmaster
,
J.
,
Joulin
,
G.
, and
Ronney
,
P.
,
1990
, “
The Structure and Stability of Nonadiabatic Flame Balls
,”
Combust. Flame
,
79
(
3–4
), pp.
381
392
.
11.
Zeidan
,
D.
,
Touma
,
R.
, and
Slaouti
,
A.
,
2014
, “
Implementation of Velocity and Pressure Non-Equilibrium in Gas-Liquid Two-Phase Flow Computations
,”
Int. J. Fluid Mech. Res.
,
41
(
6
), pp.
547
555
.
12.
Teng
,
H. H.
,
Ng
,
H. D.
,
Li
,
K.
,
Luo
,
C. T.
, and
Jiang
,
Z. L.
,
2015
, “
Evolution of Cellular Structures on Oblique Detonation Surfaces
,”
Combust. Flame
,
162
(
2
), pp.
470
477
.
13.
Zeidan
,
D.
, and
Touma
,
R.
,
2014
, “
On the Computations of Gas-Solid Mixture Two-Phase Flows
,”
Adv. Appl. Math. Mech.
,
6
(
1
), pp.
49
74
.
14.
Wang
,
T.
,
Zhang
,
Y.
,
Teng
,
H. H.
,
Jiang
,
Z. L.
, and
Ng
,
H. D.
,
2015
, “
Numerical Study of Oblique Detonation Wave Initiation in a Stoichiometric Hydrogen-Air Mixture
,”
Phys. Fluids
,
27
(
9
), p.
096101
.
15.
Zeidan
,
D.
,
Goncalvès
,
E.
, and
Slaouti
,
A.
,
2013
, “
Computer Simulations of Cavitating Two-Phase Flows
,”
AIP Conf. Proc.
,
1558
, pp.
208
211
.
You do not currently have access to this content.