The thermal, mechanical, and morphological characteristics of three selected commercially available, injection-moldable, high thermal conductivity (20–32 W/m K), polyimide 66 (PA66) polymer composites from two vendors are characterized for possible heat exchange applications in electronic equipment. The fillers are found to consist of 10 μm diameter, 120–350 μm long fibers, made of carbon in two composites, and a hybrid combination of essentially carbon, oxygen, and silicon in the third composite. Fiber weight loading ranges from 63% to 69%. The hybrid, high-length fiber-reinforced material overall displays superior mechanical properties (i.e., ultimate tensile, flexural and impact strengths, and flexural modulus) compared with the other two carbon-filled composites. For the hybrid-filled and one carbon-filled material (both having a thermal conductivity of 20 W/m K), good agreement between mechanical property measurements and corresponding vendor data is obtained. For the material having the highest vendor-specified thermal conductivity (i.e., 32 W/m K) and weight filler fraction (i.e., 69%), mechanical properties are up to 37% lower than corresponding vendor data. The heat transfer rates of parallel plate, cross-flow air–water heat exchanger prototypes made of the three PA66 materials are comparable to that of an aluminum prototype having the same geometry. Based on the combined heat transfer and mechanical property characterization results, the hybrid, long fiber-filled PA66 polymer composite appears to have the best combination of mechanical and heat transfer characteristics, for potential use in electronics heat exchange applications.

References

References
1.
Zaheed
,
L.
, and
Jachuck
,
R. J. J.
,
2004
, “
Review of Polymer Compact Heat Exchangers, With Special Emphasis on a Polymer Film Unit
,”
Appl. Therm. Eng.
,
24
(
16
), pp.
2323
2358
.
2.
T'Joen
,
C.
,
Park
,
Y.
,
Wang
,
Q.
,
Sommers
,
A.
,
Han
,
X.
, and
Jacobi
,
A.
,
2009
, “
A Review on Polymer Heat Exchangers for HVAC&R Applications
,”
Int. J. Refrig.
,
32
(
5
), pp.
763
779
.
3.
Cevallos
,
J. G.
,
Bergles
,
A. E.
,
Bar-Cohen
,
A.
,
Rodgers
,
P.
, and
Gupta
,
S. K.
,
2012
, “
Polymer Heat Exchangers—History, Opportunities, and Challenges
,”
Heat Transfer Eng.
,
33
(
13
), pp.
1074
1093
.
4.
AMETEK Fluoropolymer Products
,
2016
, “
Q-Series Heat Exchangers
,” AMETEK, Newark, DE, accessed May 28, 2016, http://www.ametekfpp.com/Shell-and-Tube-Heat-Exchangers/index.aspx
5.
Krupa
,
I.
, and
Chodák
,
I.
,
2001
, “
Physical Properties of Thermoplastic/Graphite Composites
,”
Eur. Polym. J.
,
37
(
11
), pp.
2159
2168
.
6.
Mamunya
,
Y. P.
,
Davydenko
,
V. V.
,
Pissis
,
P.
, and
Lebedev
,
E. V.
,
2002
, “
Electrical and Thermal Conductivity of Polymers Filled With Metal Powders
,”
Eur. Polym. J.
,
38
(
9
), pp.
1887
1897
.
7.
Gu
,
J.
,
Zhang
,
Q.
,
Dang
,
J.
,
Zhang
,
J.
, and
Yang
,
Z.
,
2009
, “
Thermal Conductivity and Mechanical Properties of Aluminum Nitride Filled Linear Low-Density Polyethylene Composites
,”
Polym. Eng. Sci.
,
49
(
5
), pp.
1030
1034
.
8.
Leung
,
S. N.
,
Khan
,
M. O.
,
Chana
,
E.
,
Naguib
,
H.
,
Dawson
,
F.
,
Adinkrah
,
V.
, and
Lakatos-Hayward
,
L.
,
2013
, “
Analytical Modeling and Characterization of Heat Transfer in Thermally Conductive Polymer Composites Filled With Spherical Particulates
,”
Composites, Part B
,
45
(
1
), pp.
43
49
.
9.
Tsekmes
,
I. A.
,
Kochetov
,
R.
,
Morshuis
,
P. H. F.
, and
Smit
,
J. J.
,
2013
, “
Thermal Conductivity of Polymeric Composites: A Review
,”
IEEE International Conference on Solid Dielectrics
(
ICSD
), Bologna, Italy, June 30–July 4, pp.
678
681
.
10.
Díez-Pascual
,
A. M.
,
Naffakh
,
M.
,
Marco
,
C.
,
Gómez-Fatou
,
M. A.
, and
Ellis
,
G. J.
,
2014
, “
Multiscale Fiber-Reinforced Thermoplastic Composites Incorporating Carbon Nanotubes: A Review
,”
Curr. Opin. Solid State Mater. Sci.
,
18
(
2
), pp.
62
80
.
11.
Lebedev
,
S. M.
, and
Gefle
,
O. S.
,
2015
, “
Evaluation of Electric, Morphological and Thermal Properties of Thermally Conductive Polymer Composites
,”
Appl. Therm. Eng.
,
91
, pp.
875
882
.
12.
Bahadur
,
R.
,
2005
, “
Characterization, Modeling and Optimization of Polymer Composite Pin Fins
,”
Ph.D. thesis
, University of Maryland, College Park, MD.
13.
Eveloy
,
V.
,
Rodgers
,
P.
, and
Diana
,
A.
,
2015
, “
Performance Investigation of Thermally Enhanced Polymer Composite Materials for Microelectronics Cooling
,”
Microelectron. J.
,
46
(
12
), pp.
1216
1224
.
14.
Chan
,
E. H.
,
2011
, “
Development and Characterization of Thermally Conductive Polymeric Composites for Electronic Packaging Applications
,”
Master's thesis
, University of Toronto, Toronto, ON, Canada.
15.
Khan
,
M. O.
,
2012
, “
Thermally Conductive Polymer Composites for Electronic Packaging Applications
,”
Master's thesis
, University of Toronto, Toronto, ON, Canada.
16.
Bar-Cohen
,
A.
,
Rodgers
,
P.
, and
Cevallos
,
J. G.
,
2008
, “
Application of Thermally Enhanced Thermoplastics to Seawater-Cooled Liquid-Liquid Heat Exchangers
,”
Fifth European Thermal-Sciences Conference (Eurotherm)
, Eindhoven, The Netherlands, May 18–22, Paper No.
HEX-10
.
17.
Heinle
,
C.
, and
Drummer
,
D.
,
2010
, “
Potential of Thermally Conductive Polymers for the Cooling of Mechatronic Parts
,”
Phys. Procedia
,
5
, pp.
735
744
.
18.
Bahadur
,
R.
, and
Bar-Cohen
,
A.
,
2007
, “
Orthotropic Thermal Conductivity Effect on Cylindrical Pin Fin Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(5–6), pp.
1155
1162
.
19.
Luckow
,
P.
,
Bar-Cohen
,
A.
, and
Rodgers
,
P.
,
2010
, “
Minimum Mass Polymer Seawater Heat Exchanger for LNG Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031009
.
20.
Cevallos
,
J.
,
Gupta
,
S. K.
, and
Bar-Cohen
,
A.
,
2011
, “
Incorporating Moldability Considerations During the Design of Polymer Heat Exchangers
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081009
.
21.
Hall
,
T.
,
Subramoniam
,
T.
,
Bruck
,
H.
, and
Gupta
,
S. K.
,
2012
, “
Development of a Fiber Orientation Measurement Methodology for Injection Molded Thermally-Enhanced Polymers
,”
ASME
Paper No. MSEC2012-7291.
22.
Deisenroth
,
D. C.
,
Arie
,
M. A.
,
Dessiatoun
,
S.
,
Shooshtari
,
A.
,
Ohadi
,
M.
, and
Bar-Cohen
,
A.
,
2015
, “
Review of Most Recent Progress on Development of Polymer Heat Exchangers for Thermal Management Applications
,”
ASME
Paper No. IPACK2015-48637.
23.
Heiser
,
J. A.
,
King
,
J. P.
,
Konell
,
I.
,
Miskioglu
,
I.
, and
Sutter
,
L. L.
,
2004
, “
Tensile and Impact Properties of Carbon Filled Nylon-6,6 Based Resins
,”
Appl. Polym. Sci.
,
91
(
5
), pp.
2881
2893
.
24.
Bahadur
,
R.
, and
Bar-Cohen
,
A.
,
2006
, “
Characterization and Modeling of Anisotropic Thermal Conductivity in Polymer Composites
,”
ASME
Paper No. IMECE2006-15484.
25.
Cevallos
,
J. G.
,
2014
, “
Thermal and Manufacturing Design of Polymer Composite Heat Exchangers
,”
Ph.D. thesis
, University of Maryland, College Park, MD.
26.
Spitalsky
,
Z.
,
Tasis
,
D.
,
Papagelis
,
K.
, and
Galiotis
,
C.
,
2010
, “
Carbon Nanotube–Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties
,”
Prog. Polym. Sci.
,
35
(
3
), pp.
357
401
.
27.
Al-Saleh
,
M. H.
, and
Sundararaj
,
U.
,
2011
, “
Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites
,”
Composites, Part A
,
42
(
12
), pp.
2126
2142
.
28.
Sengupta
,
R.
,
Bhattacharya
,
M.
,
Bandyopadhyay
,
S.
, and
Bhowmick
,
A. K.
,
2011
, “
A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites
,”
Prog. Polym. Sci.
,
36
(
5
), pp.
638
670
.
29.
Fu
,
S. Y.
,
Lauke
,
B.
,
Mäder
,
E.
,
Yue
,
C. Y.
, and
Hu
,
X.
,
2000
, “
Tensile Properties of Short-Glass-Fiber- and Short-Carbon-Fiber-Reinforced Polypropylene Composites
,”
Composites, Part A
,
31
(
10
), pp.
1117
1125
.
30.
Karsli
,
N.
, and
Aytac
,
A.
,
2013
, “
Tensile and Thermomechanical Properties of Short Carbon Fiber Reinforced Polyamide 6 Composites
,”
Composites, Part B
,
51
, pp.
270
275
.
31.
Shaikh
,
H.
,
Gulrez
,
S. K.
,
Anis
,
A.
,
Poulose
,
A. M.
,
Qua
,
P. E.
,
Yadav
,
M. K.
, and
Al-Zahrani
,
S. M.
,
2014
, “
Progress in Carbon Fiber and Its Polypropylene-and Polyethylene-Based Composites
,”
Polym.-Plast. Technol. Eng.
,
53
(
17
), pp.
1845
1860
.
32.
Darawsheh
,
I.
,
Diana
,
A.
,
Rodgers
,
P.
,
Eveloy
,
V.
,
Al Maskari
,
F.
, and
Bojanampati
,
S.
,
2016
, “
Thermal and Mechanical Performance Assessment of Two Commercially-Available PA66 Polymer Composite Materials for Microelectronics Heat Exchanger Applications
,”
17th IEEE International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and MicroSystems
(
EuroSimE
), Montpellier, France, Apr. 17–20, pp.
1
7
.
33.
Ahn
,
K.
,
Kim
,
K.
,
Kim
,
M.
, and
Kim
,
J.
,
2015
, “
Fabrication of Silicon Carbonitride-Covered Boron Nitride/Nylon 6,6 Composite for Enhanced Thermal Conductivity by Melt Process
,”
Ceram. Int.
,
41
(
2
), pp.
2187
2195
.
34.
Hu
,
Y.
,
Du
,
G.
, and
Chen
,
N.
,
2016
, “
A Novel Approach for Al2O3/Epoxy Composites With High Strength and Thermal Conductivity
,”
Compos. Sci. Technol.
,
124
, pp.
36
43
.
35.
Li
,
Q.
,
Guo
,
Y.
,
Li
,
W.
,
Qiu
,
S.
,
Zhu
,
C.
,
Wei
,
X.
,
Chen
,
M.
,
Liu
,
C.
,
Liao
,
S.
,
Gong
,
Y.
,
Mishra
,
A. K.
, and
Liu
,
L.
,
2014
, “
Ultrahigh Thermal Conductivity of Assembled Aligned Multilayer Graphene/Epoxy Composite
,”
Chem. Mater.
,
26
(
15
), pp.
4459
4465
.
36.
Ha
,
S. M.
,
Lee
,
H. L.
,
Lee
,
S.-G.
,
Kim
,
B. G.
,
Kim
,
Y. S.
,
Won
,
J. C.
,
Choi
,
W. J.
,
Lee
,
D. C.
,
Kim
,
J.
, and
Yoo
,
Y.
,
2013
, “
Thermal Conductivity of Graphite Filled Liquid Crystal Polymer Composites and Theoretical Predictions
,”
Compos. Sci. Technol.
,
88
, pp.
113
119
.
37.
Xu
,
Y.
,
Chung
,
D. D. L.
, and
Mroz
,
C.
,
2001
, “
Thermally Conducting Aluminum Nitride Polymer-Matrix Composites
,”
Composites, Part A
,
32
(
12
), pp.
1749
1757
.
38.
Li
,
Z.
,
Mantell
,
S. C.
, and
Davidson
,
J. H.
,
2005
, “
Mechanical Analysis of Streamlined Tubes With Non-Uniform Wall Thickness for Heat Exchangers
,”
J. Strain Anal.
,
40
(
3
), pp.
275
285
.
39.
Laaber
,
D.
, and
Bart
,
H.-J.
,
2015
, “
Chemical Resistance and Mechanical Stability of Polymer Film Heat Exchangers
,”
Chem. Ing. Tech.
,
87
(
3
), pp.
306
311
.
40.
Trojanowski
,
R.
,
Butcher
,
T.
,
Worek
,
M.
, and
Wei
,
G.
,
2016
, “
Polymer Heat Exchanger Design for Condensing Boiler Applications
,”
Appl. Therm. Eng.
,
103
, pp.
150
158
.
41.
Robinson
,
F.
,
Cevallos
,
J. G.
,
Bar-Cohen
,
A.
, and
Bruck
,
H.
,
2011
, “
Modeling and Validation of a Prototype Thermally-Enhanced Polymer Heat Exchanger
,”
ASME
Paper No. IMECE2011-65684.
42.
Rodgers
,
P.
,
Diana
,
A.
,
Bojanampati
,
S.
,
Dewinter
,
S.
,
Krishna
,
V.
,
Gulati
,
P.
,
Eveloy
,
V.
, and
El Sayed
,
L.
,
2015
, “
Experimental Characterization of Thermally Enhanced Polymer Composite Heat Exchangers
,”
Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
208
215
.
43.
Scientific Thermo Fisher
,
2015
, “
HAAKE™ MiniJet Pro Piston Injection Molding System
,” Thermo Scientific, Waltham, MA, accessed Jan. 5, 2016, http://www.thermoscientific.com/content/tfs/en/product/haake-minijet-pro-piston-injection-molding-system.html
44.
FEI
,
2016
, “FEI Quanta SEM,” FEI, Hillsboro, OR, accessed Mar. 20, 2016, http://www.fei.com/products/sem/quanta-sem/
45.
TA Instruments
,
2016
, “TA Instruments Discovery Series,” TA Instruments, New Castle, DE, accessed Mar. 20, 2016, http://www.tainstruments.com/discovery-tga/
46.
ISO
,
2012
, “
Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO527-2
.
47.
Instron
,
2016
, “Universal Testing Systems,” Instron, Norwood, MA, accessed Mar. 20, 2016, http://www.instron.us/en-us/products/testing-systems/universal-testing-systems
48.
MTS Systems Corporation,
2016
, “MTS 810 & 858 Material Testing Systems,” MTS Systems Corporation, Eden Prairie, MN, accessed Mar. 20, 2016, http://www.upc.edu/sct/documents_equipament/d_77_id-412.pdf
49.
ISO
,
2010
, “
Plastics—Determination of Flexural Properties
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO178
.
50.
ISO
,
2000
, “
Plastics—Determination of Izod Impact Strength
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO180
.
51.
CEAST Resil Impactor Charpy
,
2006
, “
Izod and Tensile Impact Tester
,” CCSI Inc., Akron, OH, accessed Mar. 20, 2016, http://www.ccsi-inc.com/p-impact-ceast-resil-impactor-6956.htm
52.
Lobo
,
H.
, and
Bonilla
,
J. V.
, eds.,
2003
,
Handbook of Plastics Analysis
, Vol.
68
,
CRC Press
,
Boca Raton, FL
.
53.
Liu
,
T.
,
Li
,
J.
,
Wang
,
X.
,
Deng
,
Z.
,
Yu
,
X.
,
Lu
,
A.
,
Yu
,
F.
, and
He
,
J.
,
2015
, “
Preparation and Properties of Thermal Conductive Polyamide 66 Composites
,”
J. Thermoplast. Compos. Mater.
,
28
(
1
), pp.
32
45
.
54.
Zhang
,
H.
,
Zhang
,
Z.
, and
Friedrich
,
K.
,
2007
, “
Effect of Fiber Length on the Wear Resistance of Short Carbon Fiber Reinforced Epoxy Composites
,”
Compos. Sci. Technol.
,
67
(
2
), pp.
222
230
.
You do not currently have access to this content.