In order to explore the effect of direct current (DC) and alternating current (AC) magnetic field (MF) on the biological (fruits and vegetables) phase transformation and ice crystal formation, we used carrot strips (0.5 × 0.5 × 1 cm3) and put them at low temperature control panel. The samples were frozen under AC and DC MF of 50 Hz with different intensities, i.e., 0, 0.46, 0.9, 1.8, 3.6, and 7.2 mT. The ice crystals formation during the process of cell freezing was observed and recorded using the optical microscope, and the beginning and ending time of the phase transformation with the corresponding temperatures were determined. The results show that the DC and AC MF situations compared to non-MF can decrease ice crystal volume and be more flocculent. The changes will reduce the cell membrane damage rate. The increase of magnetic field intensity delays the phase change time and leads to a shorter phase transition duration, a reduction in the cells’s lowest noncrystallization temperature is also observed. Such changes in thermal dynamic process and size elementary freezing (rapid formation of small ice crystals) reduce the damage to the quality of fruits and vegetables.

References

References
1.
Villa-Rodriguez
,
J. A.
,
Palafox-Carlos
,
H.
,
Yahia
,
E. M.
,
Ayala-Zavala
,
J. F.
, and
Gonzalez-Aguilar
,
G. A.
,
2015
, “
Maintaining Antioxidant Potential of Fresh Fruits and Vegetables After Harvest
,”
Crit. Rev. Food Sci. Nutr.
,
55
(
6
), pp.
806
822
.
2.
Terpstra
,
M. J.
,
Steenbekkers
,
L. P. A.
,
de Maertelaere
,
N. C. M.
, and
Nijhuis
,
S.
,
2005
, “
Food Storage and Disposal: Consumer Practices and Knowledge
,”
Br. Food J.
,
107
(
7
), pp.
526
533
.
3.
lal Basediya
,
A.
,
Samuel
,
D. V. K.
, and
Beera
,
V.
,
2014
, “
Evaporative Cooling System for Storage of Fruits and Vegetables–A Review
,”
J. Food Sci. Technol.
,
50
(
3
), pp.
429
442
.
4.
Holysz
,
L.
,
Szczes
,
A.
, and
Chibowski
,
E.
,
2007
, “
Effects of a Static Magnetic Field on Water and Electrolyte Solutions
,”
J. Colloid Interface Sci.
,
316
(
2
), pp.
996
1002
.
5.
Xanthakis
,
E.
,
Havet
,
M.
,
Chevallier
,
S.
,
Abadie
,
J.
, and
Le-Bail
,
A.
,
2013
, “
Effect of Static Electric Field on Ice Crystal Size Reduction During Freezing of Pork Meat
,”
Innovative Food Sci. Emerging Technol.
,
20
, pp.
115
120
.
6.
Anese
,
M.
,
Manzocco
,
L.
,
Panozzo
,
A.
,
Beraldo
,
P.
,
Foschia
,
M.
, and
Nicoli
,
M. C.
,
2012
, “
Effect of Radiofrequency Assisted Freezing on Meat Microstructure and Quality
,”
Food Res. Int.
,
46
(
1
), pp.
50
54
.
7.
Dahmani
,
C.
,
Mykhaylyk
,
O.
,
Helling
,
F.
,
Götz
,
S.
,
Weyh
,
T.
,
Herzog
,
H.-G.
, and
Plank
,
C.
,
2013
, “
Rotational Magnetic Pulses Enhance the Magnetofection Efficiency In Vitro in Adherent and Suspension Cells
,”
J. Magn. Magn. Mater.
,
332
, pp.
163
171
.
8.
Mok
,
J. H.
,
Choi
,
W.
,
Park
,
S. H.
, Lee, S. H., and Jun, S., 2015, “
Emerging Pulsed Electricfield (PEF) and Static Magnetic Field (SMF) Combination Technology for Food Freezing
,”
Int. J. Refrig.
,
50
, pp.
137
145
.
9.
Liboff
,
A. R.
,
Williams
,
T.
, Jr.
,
Strong
,
D. M.
, and
Wistar
,
R.
, Jr.
,
1984
, “
Time-Varying Magnetic Fields Effect on DNA Synthesis
,”
Science
,
223
(
4638
), pp.
818
820
.
10.
Jouni
,
F. J.
,
Abdolmaleki
,
P.
,
Behmanesh
,
M.
, and Movahedin, M.,
2014
, “
An In Vitro Study of the Impact of 4 mT Static Magnetic Field to Modify the Differentiation Rate of Rat Bone Marrow Stem Cells Into Primordial Germ Cells
,”
Differentiation
,
87
(
5
), pp.
230
237
.
11.
Xanthakis
,
E.
,
Le-Bail
,
A.
, and
Ramaswamy
,
H.
,
2014
, “
Development of an Innovative Microwave Assisted Food Freezing Process
,”
Innovative Food Sci. Emerging Technol.
,
26
, pp.
176
181
.
12.
Kaku
,
M.
,
Kamada
,
H.
,
Kawata
,
T.
, Koseki, H., Abedini, S., Kojima, S., Motokawa, M., Fujita, T., Ohtani, J., Tsuka, N., Matsuda, Y., Sunagawa, H., Hernandes, R. A. M., Ohwada, N., and Tanne, K.,
2010
, “
Cryopreservation of Periodontal Ligament Cells With Magnetic Field for Tooth Banking
,”
Cryobiology
,
61
(
1
), pp.
73
78
.
13.
Tagami
,
M.
,
Hamai
,
M.
,
Mogi
,
I.
, Watanabe, K., and Motokawa, M.,
1999
, “
Solidification of Levitating Water in a Gradient Strong Magnetic Field
,”
J. Cryst. Growth
,
203
(
4
), pp.
594
598
.
14.
Aleksandrov
,
V. D.
,
Barannikov
,
A. A.
, and
Dobritsa
,
N. V.
,
2000
, “
Effect of Magnetic Field on the Supercooling of Water Drops
,”
Inorg. Mater.
,
36
(
9
), pp.
895
898
.
15.
Toledo, E. J. L., Ramalho, T. C., and Magriotis, Z. M.,
2008
, “
Influence of Magnetic Field on Physical—Chemical Properties of the Liquid Water: Insights From Experimental and Theoretical Models
,”
J. Mol. Struct.
,
888
(
1–3
), pp.
409
415
.
16.
Szcześ
,
A.
,
Chibowski
,
E.
,
Hotysz
,
L.
, and Rafalski, P.,
2011
, “
Effects of Static Magnetic Field on Water at Kinetic Condition
,”
Chem. Eng. Process.: Process Intensif.
,
50
(
1
), pp.
124
127
.
17.
Han
,
X.
,
Peng
,
Y.
, and
Ma
,
Z.
,
2016
, “
Effect of Magnetic Field on Optical Features of Water and KCl Solutions
,”
Opt.–Int. J. Light Electron Opt.
,
127
(
16
), pp.
6371
6376
.
18.
Fernández
,
P. P.
,
Otero
,
L.
, and
Guignon
,
B.
,
2006
, “
High-Pressure Shift Freezing Versus High-Pressure Assisted Freezing: Effects on the Microstructure of a Food Model
,”
Food Hydrocolloids
,
20
(
4
), pp.
510
522
.
You do not currently have access to this content.