Damage to plasma facing components (PFC) due to high intense energy deposition during tokamak plasma instabilities is still considered one of the most serious and unresolved problem for the fusion reactors. Key plasma facing components as the divertor and the entire first wall during off-normal operations are generally subjected to high rate of deposition of energy, neutrons, and radiation leading generally to structural catastrophic failures including burnout of coolant tubes. The use of alumina nanofluids applied to future fusion reactors is proposed to, at least, mitigate some of the problems described providing better thermal performance during off-normal events. A 1D heat transfer model using the characteristics of alumina nanoparticles dispersed in common water is presented. Heat transfer of alumina nanofluid is modeled. Results obtained are critically compared with other well-known computer packages and experiments used to predict the coolant heat removal capabilities during longer quasi-steady state plasma instabilities events. Enhancements produced by the use of alumina nanoparticles are evident. Comparisons with both pure water and swirl tape inserts are carried out and critical heat flux (CHF) conditions are predicted showing good agreement with both published numerical and experimental data.

References

References
1.
Hassanein
,
A.
,
Sizyuk
,
T.
, and
Ulrickson
,
M.
,
2008
, “
Vertical Displacement Events: A Serious Concern in the Future ITER Operation
,”
Fusion Eng. Des.
,
83
, pp.
1020
1024
.
2.
Genco
,
F.
, and
Hassanein
,
A.
,
2014
, “
Simulation of Damage to Tokamaks Plasma Facing Components During Intense Abnormal Power Deposition
,”
Fusion Eng. Des.
,
89
(
4
), pp.
335
341
.
3.
El-Morshedy
,
S.
, and
Hassanein
,
A.
,
2009
, “
Transient Thermal Hydraulic Modeling and Analysis of ITER Divertor Plate System
,”
Fusion Eng. Des.
,
84
(
12
), pp.
2158
2166
.
4.
Rodig
,
M.
,
Duwe
,
R.
,
Linke
,
J.
,
Qian
,
R. H.
, and
Shuster
,
A.
,
1997
, “
Degradation of Plasma Facing Materials Due to Severe Thermal Shocks
,” 17th
IEEE/NPSS
Symposium on Fusion Engineering
, San Diego, CA, Oct. 6–10, pp.
865
868
.
5.
Sizyuk
,
T.
,
Hassanein
,
A.
, and
Ulrickson
,
M.
,
2013
, “
Thermal Analysis of New ITER FW and Divertor Design During VDE Energy Deposition
,”
Fusion Eng. Des.
,
88
(
3
), pp.
160
164
.
6.
Hassanein
,
A.
,
1996
, “
Disruption Damage to Plasma Facing Components From Various Plasma Instabilities
,”
Fusion Technol.
,
30
(
3
), pp.
713
719
.
7.
Hassanein
,
A.
,
Federicib
,
G.
,
Konkashbaevc
,
I.
,
Zhitlukhinc
,
A.
, and
Litunovskyd
,
V.
,
1998
, “
Materials Effects and Design Implications of Disruptions and Off-Normal Events in ITER
,”
Fusion Eng. Des.
,
39–40
, pp.
201
210
.
8.
Raffray
,
A. R.
, and
Federici
,
G.
,
1997
, “
RACLETTE: A Model for Evaluating the Thermal Response of Plasma Facing Components to Slow High Power Plasma Transients, Part I: Theory and Description of Model Capabilities
,”
J. Nucl. Mater.
,
244
(
2
), pp.
85
100
.
9.
Federici
,
G.
, and
Raffray
,
A. R.
,
1997
, “
RACLETTE: A Model for Evaluating the Thermal Response of Plasma Facing Components to Slow High Power Plasma Transients, Part II: Analysis of ITER Plasma Facing Components
,”
J. Nucl. Mater.
,
244
(
2
), pp.
101
130
.
10.
Hirai
,
T.
,
Ezato
,
K.
, and
Majerus
,
P.
,
2005
, “
ITER Relevant High Heat Flux Testing on Plasma Facing Surfaces
,”
Mater. Trans.
,
46
(
3
), pp.
412
424
.
11.
Smith
,
E.
, and
Pongjet
,
P.
,
2004
,
Enhancement of Heat Transfer in Tube With Regularly-Shaped Helical Tape Swirl Generators
,
Elsevier
,
Kuala Lumpur, Thailand
.
12.
Watcharin
,
N.
,
Smith
,
E.
, and
Pongjet
,
P.
,
2006
, “
Effect of Twisted-Tape Inserts on Heat Transfer in a Tube
,”
2nd Joint International Conference on Sustainable Energy and Environment
, Bangkok, Thailand, Nov. 21–23.
13.
Sivashanmugam
,
S.
, and
Suresh
,
S.
,
2007
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Turbulent Flow Through a Circular Tube Fitted With Regularly Spaced Helical Screw-Tape Inserts
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1311
1319
.
14.
Wiliams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042412
.
15.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.-W.
,
2008
, “
Experimental Study of Flow Critical Heat Flux in Low Concentration Water-Based Nanofluids
,”
ASME
Paper No. MNHT2008-52321.
16.
Palm
,
S. J.
,
Roy
,
G.
, and
Nguyen
,
C. T.
,
2006
, “
Heat Transfer Enhancement With the Use of Nanofluids in Radial Flow Cooling Systems Considering Temperature Dependent Properties
,”
Appl. Therm. Eng.
,
26
(17–18), pp.
2209
2218
.
17.
Ezato
,
K.
,
Suzuki
,
S.
,
Dairaku
,
M.
, and
Akiba
,
M.
,
2008
, “
Critical Heat Flux Experiments Using a Screw Tube Under DEMO Divertor-Relevant Cooling Conditions
,”
Fusion Eng. Des.
,
83
(7–9), pp.
1097
1101
.
18.
Domalapally
,
P. K.
, and
Entler
,
S.
,
2015
, “
Comparison of Schemes for Cooling High Heat Flux Components in Fusion Reactors
,”
Acta Polytech.
,
55
(
2
), pp.
86
95
.
19.
Hassanein
,
A.
,
Sizyuk
,
V.
,
Miloshevsky
,
G.
, and
Sizyuk
,
T.
,
2013
, “
Can Tokamak PFC Survive a Single Event of Any Plasma Instabilities?
,”
J. Nucl. Mater.
,
438
, pp.
S1266
S1270
.
20.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
21.
Barber
,
J.
,
Brutin
,
D.
, and
Tadrist
,
L.
,
2011
, “
A Review on Boiling Heat Transfer Enhancement With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
281
.
22.
Coursey
,
J. S.
, and
Kim
,
J.
,
2008
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1577
1585
.
23.
Das
,
S. K.
, and
Narayan
,
G. P.
,
2008
, “
Survey on Nucleate Pool Boiling of Nanofluids: The Effect of Particle Size Relative to Roughness
,”
J. Nanoparticle Res.
,
10
(
7
), pp.
1099
1108
.
24.
Kim
,
H.
,
2011
, “
Enhancement of Critical Heat Flux in Nucleate Boiling of Nanofluids: A State-of-Art Review
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
415
.
25.
Jang
,
S. P.
,
Hwang
,
K. S.
, and
Lee
,
J.-H.
,
2007
, “
Effective Thermal Conductivities and Viscosities of Water-Based Nanofluids Containing Al2O3 With Low Concentration
,” 7th
IEEE
International Conference on Nanotechnology
, Hong Kong, Aug. 2–5, pp.
1011
1014
.
26.
Cabral
,
F. P.
, and
Ribatski
,
G.
,
2010
, “
Theoretical Modeling of Heat Transfer Flow Boiling of Nanofluids Inside Horizontal Micro-Scale Channels
,”
ENCIT
, Uberlandia, MG, Brazil, Dec. 5–10, Paper No. 475.
27.
Bang
,
I. C.
, and
Heo
,
G.
,
2009
, “
An Axiomatic Design Approach in Development of Nanofluid Coolants
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
75
90
.
28.
Wen
,
D.
,
2008
, “
Mechanism of Thermal Nanofluids on Enhanced Critical Heat Flux (CHF)
,”
Int. J. Heat Mass transfer
,
51
(
19–20
), pp.
4958
4965
.
29.
Kim
,
S. J.
,
McKrell
,
T.
, and
Buongiorno
,
J.
,
2009
, “
Experimental Study of Flow Critical Heat Flux in Alumina Water, Zinc-Oxide Water and Diamond-Water Nanofluids
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043204
.
30.
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2012
, “
A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification
,”
ASME J. Heat Transfer
,
134
(
2
), p.
024001
.
31.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.
32.
Yu
,
L.
,
2012
, “
Thermal Transport of Nanofluids in a Minichannel
,”
Ph.D. thesis
, University of Houston, Houston, TX.
33.
Marshall
,
T. D.
,
1998
, “
Experimental Examination of the Post-Critical Heat Flux and Loss Flow Accident Phenomena for Prototypical ITER Divertor Channels
,” Doctoral thesis, Rensselaer Polytechnic Institute, Troy, New York.
34.
Bergles
,
A. E.
, and
Ronhsenow
,
W. M.
,
1964
, “
The Determination of Forced Convection Surface-Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
86
(
3
), pp.
365
372
.
35.
Akaki
,
M.
,
Ogawa
,
M.
,
Kunugi
,
T.
,
Satoh
,
K.
, and
Suzuki
,
S.
,
1996
, “
Experiments on Heat Transfer of Smooth and Swirl Tubes Under One-Sided Heating Conditions
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
3045
3055
.
36.
Kandlikar
,
S. G.
,
1998
, “
Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
395
401
.
37.
Tong
,
L. S.
,
1975
, “
A Phenomenological Study of Critical Heat Flux
,”
ASME
Paper No. 75-HT-68.
38.
Dewitt
,
G.
,
Mckrell
,
T.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
Park
,
R. J.
,
2013
, “
Experimental Study of Critical Heat Flux With Alumina-Water Nanofluids in Downward-Facing Channels for In-Vessel Retention Applications
,”
Nucl. Eng. Technol.
,
45
(
3
), pp.
335
346
.
39.
Hassanein
,
A.
, and
Sizyuk
,
T.
,
2008
, “
Comprehensive Simulation of Vertical Instability Events and Their Serious Damage to ITER Plasma Facing Components
,”
Nucl. Fusion
,
48
(
11
), p.
115008
.
40.
Majerus
,
P.
,
Duwe
,
R.
,
Hirai
,
T.
,
Linke
,
J.
, and
Rodig
,
M.
,
2005
, “
The New Electron Beam Test Facility JUDITH II for High Heat Flux Experiments on Plasma Facing Components
,”
Fusion Eng. Des.
,
75–79
, pp.
365
369
.
41.
Marshall
,
T. D.
,
McDonald
,
J. M.
,
Cadwallader
,
L. C.
, and
Steiner
,
D.
,
2000
, “
An Experimental Examination of the Loss of Flow Accident Phenomena for Prototypical ITER Divertor Channels of Y = 0 and Y = 2
,”
Fusion Technol.
,
37
, pp.
38
53
.
42.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characterization of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
851
862
.
43.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.
44.
Marshall
,
T. D.
,
Youchison
,
D.
, and
Cadwallader
,
L. C.
,
2001
, “
Modeling the Nukiyama Curve for Water-Cooled Fusion Divertor Channels
,”
Fusion Technol.
,
39
(
2
), pp.
849
855
.
45.
Yan
,
J.
,
Bi
,
Q.
,
Cai
,
L.
,
Zhu
,
G.
, and
Yuan
,
Q.
,
2015
, “
Subcooled Flow Boiling Heat Transfer of Water in Circular Tubes With Twisted-Tape Inserts Under High Heat Fluxes
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
11
21
.
You do not currently have access to this content.