The effects of geometrical arrangement on the heat transfer and pressure drop characteristics in compact louvered fin-and-tube heat exchangers were studied experimentally and numerically along with εNTU method. Different geometrical parameters including louver angle, louver pitch, louver number, the nonlouvered inlet and exit fin length, and redirection of fluid flow are considered to determine their effects on the flow field. The study is performed for different louver angles varying from θL=12 to 60 deg, and optimal heat transfer rate is obtained at louver angle of θL=28deg. Also, it is found that increasing the louver number, NL, on the fin surface enhances the heat transfer performance. It is shown that the average Nusselt number is increased as the louver pitch is decreased and its optimum value is obtained at Lp=0.9 mm. However, comparing to the effect of louver number, the louver pitch has a small effect on the performance of the heat exchanger. Additionally, the optimum values of nonlouvered inlet and exit fin length and redirection length of fin are obtained with different flow conditions.

References

References
1.
Wang
,
C.-C.
,
Lee
,
C.-J.
,
Chang
,
C.-T.
, and
Lin
,
S.-P.
,
1999
, “
Heat Transfer and Friction Correlation for Compact Louvered Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
1945
1956
.
2.
Wang
,
C.-C.
,
Lin
,
Y.-T.
, and
Lee
,
C.-J.
,
2000
, “
Heat and Momentum Transfer for Compact Louvered Fin-and-Tube Heat Exchangers in Wet Conditions
,”
Int. J. Heat Mass Transfer
,
43
(
18
), pp.
3443
3452
.
3.
Han
,
H.
,
He
,
Y.-L.
,
Li
,
Y.-S.
,
Wang
,
Y.
, and
Wu
,
M.
,
2013
, “
A Numerical Study on Compact Enhanced Fin-and-Tube Heat Exchangers With Oval and Circular Tube Configurations
,”
Int. J. Heat Mass Transfer
,
65
, pp.
686
695
.
4.
Zhang
,
X.
, and
Tafti
,
D.
,
2003
, “
Flow Efficiency in Multi-Louvered Fins
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1737
1750
.
5.
Webb
,
R. L.
,
1990
, “
The Flow Structure in the Louvered Fin Heat Exchanger Geometry
,”
SAE
Technical Paper No. 0148-7191.
6.
Lyman
,
A.
,
Stephan
,
R.
,
Thole
,
K.
,
Zhang
,
L.
, and
Memory
,
S.
,
2002
, “
Scaling of Heat Transfer Coefficients Along Louvered Fins
,”
Exp. Therm. Fluid Sci.
,
26
(
5
), pp.
547
563
.
7.
Leu
,
J.-S.
,
Liu
,
M.-S.
,
Liaw
,
J.-S.
, and
Wang
,
C.-C.
,
2001
, “
A Numerical Investigation of Louvered Fin-and-Tube Heat Exchangers Having Circular and Oval Tube Configurations
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4235
4243
.
8.
Joardar
,
A.
, and
Jacobi
,
A.
,
2005
, “
Impact of Leading Edge Delta-Wing Vortex Generators on the Thermal Performance of a Flat Tube, Louvered-Fin Compact Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1480
1493
.
9.
Hsieh
,
C.-T.
, and
Jang
,
J.-Y.
,
2006
, “
3-D Thermal-Hydraulic Analysis for Louver Fin Heat Exchangers With Variable Louver Angle
,”
Appl. Therm. Eng.
,
26
(
14
), pp.
1629
1639
.
10.
Şahin
,
H. M.
,
Dal
,
A. R.
, and
Baysal
,
E.
,
2007
, “
3-D Numerical Study on the Correlation Between Variable Inclined Fin Angles and Thermal Behavior in Plate Fin-Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
27
(
11
), pp.
1806
1816
.
11.
Sanders
,
P. A.
, and
Thole
,
K. A.
,
2006
, “
Effects of Winglets to Augment Tube Wall Heat Transfer in Louvered Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
(
21
), pp.
4058
4069
.
12.
Lawson
,
M. J.
, and
Thole
,
K. A.
,
2008
, “
Heat Transfer Augmentation Along the Tube Wall of a Louvered Fin Heat Exchanger Using Practical Delta Winglets
,”
Int. J. Heat Mass Transfer
,
51
(
9
), pp.
2346
2360
.
13.
Wen
,
M.-Y.
, and
Ho
,
C.-Y.
,
2009
, “
Heat-Transfer Enhancement in Fin-and-Tube Heat Exchanger With Improved Fin Design
,”
Appl. Therm. Eng.
,
29
(
5
), pp.
1050
1057
.
14.
Vaisi
,
A.
,
Esmaeilpour
,
M.
, and
Taherian
,
H.
,
2011
, “
Experimental Investigation of Geometry Effects on the Performance of a Compact Louvered Heat Exchanger
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3337
3346
.
15.
Chang
,
Y.-J.
,
Chang
,
W.-J.
,
Li
,
M.-C.
, and
Wang
,
C.-C.
,
2006
, “
An Amendment of the Generalized Friction Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
49
(
21
), pp.
4250
4253
.
16.
Malapure
,
V.
,
Mitra
,
S. K.
, and
Bhattacharya
,
A.
,
2007
, “
Numerical Investigation of Fluid Flow and Heat Transfer Over Louvered Fins in Compact Heat Exchanger
,”
Int. J. Therm. Sci.
,
46
(
2
), pp.
199
211
.
17.
Vaisi
,
A.
,
Talebi
,
S.
, and
Esmaeilpour
,
M.
,
2011
, “
Transient Behavior Simulation of Fin-and-Tube Heat Exchangers for the Variation of the Inlet Temperatures of Both Fluids
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
951
957
.
18.
Lotfi
,
B.
,
Zeng
,
M.
,
Sundén
,
B.
, and
Wang
,
Q.
,
2014
, “
3D Numerical Investigation of Flow and Heat Transfer Characteristics in Smooth Wavy Fin-and-Elliptical Tube Heat Exchangers Using New Type Vortex Generators
,”
Energy
,
73
, pp.
233
257
.
19.
Dizaji
,
H. S.
,
Jafarmadar
,
S.
, and
Mobadersani
,
F.
,
2015
, “
Experimental Studies on Heat Transfer and Pressure Drop Characteristics for New Arrangements of Corrugated Tubes in a Double Pipe Heat Exchanger
,”
Int. J. Therm. Sci.
,
96
, pp.
211
220
.
20.
Zheng
,
N.
,
Liu
,
P.
,
Shan
,
F.
,
Liu
,
J.
,
Liu
,
Z.
, and
Liu
,
W.
,
2016
, “
Numerical Studies on Thermo-Hydraulic Characteristics of Laminar Flow in a Heat Exchanger Tube Fitted With Vortex Rods
,”
Int. J. Therm. Sci.
,
100
, pp.
448
456
.
21.
Wang
,
C.-C.
,
1999
, “
On the Airside Performance of Fin-and-Tube Heat Exchangers
,”
Heat Transfer Enhancement of Heat Exchangers
,
S.
Kakaç
,
A. E.
Bergles
,
F.
Mayinger
, and
H.
Yüncü
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
141
162
.
You do not currently have access to this content.