Numerical study of jet impingement cooling of a corrugated surface with water–SiO2 nanofluid of different nanoparticle shapes was performed. The bottom wall is corrugated and kept at constant surface temperature, while the jet emerges from a rectangular slot with cold uniform temperature. The finite volume method is utilized to solve the governing equations. The effects of Reynolds number (between 100 and 500), corrugation amplitude (between 0 and 0.3), corrugation frequency (between 0 and 20), nanoparticle volume fraction (between 0 and 0.04), and nanoparticle shapes (spherical, blade, brick, and cylindrical) on the fluid flow and heat transfer characteristics were studied. Stagnation point and average Nusselt number enhance with Reynolds number and solid particle volume fraction for both flat and corrugated surface configurations. An optimal value for the corrugation amplitude and frequency was found to maximize the average heat transfer at the highest value of Reynolds number. Among various nanoparticle shapes, cylindrical ones perform the best heat transfer characteristics in terms of stagnation and average Nusselt number values. At the highest solid volume concentration of the nanoparticles, heat transfer values are higher for a corrugated surface when compared to a flat surface case.

References

References
1.
Ahmed
,
M.
,
Shuaib
,
N.
,
Yusoff
,
M.
, and
Al-Falahi
,
A.
,
2011
, “
Numerical Investigations of Flow and Heat Transfer Enhancement in a Corrugated Channel Using Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1368
1375
.
2.
Hasan
,
M. N.
,
Saha
,
S. C.
, and
Gu
,
Y.
,
2012
, “
Unsteady Natural Convection Within a Differentially Heated Enclosure of Sinusoidal Corrugated Side Walls
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5696
5708
.
3.
Selimefendigil
,
F.
, and
Chamkha
,
A. J.
,
2016
, “
Magnetohydrodynamics Mixed Convection in a LID-Driven Cavity Having a Corrugated Bottom Wall and Filled With a Non-Newtonian Power-Law Fluid Under the Influence of an Inclined Magnetic Field
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021023
.
4.
Hussain
,
S. H.
,
Hussein
,
A. K.
, and
Mohammed
,
R. N.
,
2012
, “
Studying the Effects of a Longitudinal Magnetic Field and Discrete Isoflux Heat Source Size on Natural Convection Inside a Tilted Sinusoidal Corrugated Enclosure
,”
Comput. Math. Appl.
,
64
(
4
), pp.
476
488
.
5.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2016
, “
Numerical Study of Natural Convection in a Ferrofluid-Filled Corrugated Cavity With Internal Heat Generation
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122501
.
6.
Webb
,
B.
, and
Ma
,
C.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
, pp.
105
217
.
7.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M.
, and
Button
,
B.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
8.
Lee
,
H.
,
Yoon
,
H.
, and
Ha
,
M.
,
2008
, “
A Numerical Investigation on the Fluid Flow and Heat Transfer in the Confined Impinging Slot Jet in the Low Reynolds Number Region for Different Channel Heights
,”
Int. J. Heat Mass Transfer
,
51
(15–16), pp.
4055
4068
.
9.
Sharif
,
M.
, and
Banerjee
,
A.
,
2009
, “
Numerical Analysis of Heat Transfer Due to Confined Slot-Jet Impingement on a Moving Plate
,”
Appl. Therm. Eng.
,
29
(2–3), pp.
532
540
.
10.
Nirmalkumar
,
M.
,
Katti
,
V.
, and
Prabhu
,
S.
,
2011
, “
Local Heat Transfer Distribution on a Smooth Flat Plate Impinged by a Slot Jet
,”
Int. J. Heat Mass Transfer
,
54
(1–3), pp.
727
738
.
11.
Koseoglu
,
M. F.
, and
Baskaya
,
S.
,
2010
, “
The Role of Jet Inlet Geometry in Impinging Jet Heat Transfer, Modeling and Experiments
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1417
1426
.
12.
Oztop
,
H. F.
,
Varol
,
Y.
,
Koca
,
A.
,
Firat
,
M.
,
Turan
,
B.
, and
Metin
,
I.
,
2011
, “
Experimental Investigation of Cooling of Heated Circular Disc Using Inclined Circular Jet
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
990
1001
.
13.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
14.
Selimefendigil
,
F.
, and
Oztop
,
H.
,
2015
, “
Numerical Investigation and Reduced Order Model of Mixed Convection at a Backward Facing Step With a Rotating Cylinder Subjected to Nanofluid
,”
Comput. Fluids
,
109
, pp.
27
37
.
15.
Sheikholeslami
,
M.
,
Bandpy
,
M. G.
, and
Ganji
,
D.
,
2013
, “
Numerical Investigation of MHD Effects on Al2O3-Water Nanofluid Flow and Heat Transfer in a Semi-Annulus Enclosure Using LBM
,”
Energy
,
60
, pp.
501
510
.
16.
Hamad
,
M.
, and
Ismail
,
I. P. A.
,
2010
, “
Magnetic Field Effects on Free Convection Flow of a Nanofluid Past a Vertical Semi-Infinite Flat Plate
,”
Nonlinear Anal.: Real World Appl.
,
12
(3), pp.
1338
1346
.
17.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2014
, “
Numerical Study of MHD Mixed Convection in a Nanofluid Filled LID Driven Square Enclosure With a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
78
, pp.
741
754
.
18.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Biswas
,
G.
,
2014
, “
Buoyancy Driven Convection of Nanofluids in an Infinitely Long Channel Under the Effect of a Magnetic Field
,”
Int. J. Heat Mass Transfer
,
71
, pp.
328
340
.
19.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2013
, “
Identification of Forced Convection in Pulsating Flow at a Backward Facing Step With a Stationary Cylinder Subjected to Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
111
121
.
20.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2014
, “
Pulsating Nanofluids Jet Impingement Cooling of a Heated Horizontal Surface
,”
Int. J. Heat Mass Transfer
,
69
, pp.
54
65
.
21.
Manca
,
O.
,
Mesolella
,
P.
,
Nardini
,
S.
, and
Ricci
,
D.
,
2011
, “
Numerical Study of a Confined Slot Impinging Jet With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
188
.
22.
Li
,
Q.
,
Xuan
,
Y.
, and
Yu
,
F.
,
2012
, “
Experimental Investigation of Submerged Single Jet Impingement Using Cu-Water Nanofluid
,”
Appl. Therm. Eng.
,
36
, pp.
426
433
.
23.
Roy
,
G.
,
Gherasim
,
I.
,
Nadeau
,
F.
,
Poitras
,
G.
, and
Nguyen
,
C. T.
,
2012
, “
Heat Transfer Performance and Hydrodynamic Behavior of Turbulent Nanofluid Radial Flows
,”
Int. J. Therm. Sci.
,
58
, pp.
120
129
.
24.
Nguyen
,
C. T.
,
Galanis
,
N.
,
Polidori
,
G.
,
Fohanno
,
S.
,
Popa
,
C. V.
, and
Beche
,
A. L.
,
2009
, “
An Experimental Study of a Confined and Submerged Impinging Jet Heat Transfer Using Al2O3-Water Nanofluid
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
401
411
.
25.
Selimefendigil
,
F.
,
Oztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2016
, “
Mixed Convection Due to Rotating Cylinder in an Internally Heated and Flexible Walled Cavity Filled With SiO2 Water Nanofluids: Effect of Nanoparticle Shape
,”
Int. Commun. Heat Mass Transfer
,
71
, pp.
9
19
.
26.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2015
, “
Mixed Convection in a Two-Sided Elastic Walled and SiO2 Nanofluid Filled Cavity With Internal Heat Generation: Effects of Inner Rotating Cylinder and Nanoparticle's Shape
,”
J. Mol. Liq.
,
212
, pp.
509
516
.
27.
Shih
,
Y. C.
,
Khodadadi
,
J.
,
Weng
,
K.
, and
Oztop
,
H.
,
2007
, “
Transient Leading to Periodic Fluid Flow and Heat Transfer in a Differentially-Heated Cavity Due to an Insulated Rotating Object
,”
ASME
Paper No. HT2007-32192.
28.
Vanaki
,
S.
,
Mohammed
,
H.
,
Abdollahi
,
A.
, and
Wahid
,
M. A.
,
2014
, “
Effect of Nanoparticle Shapes on the Heat Transfer Enhancement in a Wavy Channel With Different Phase Shifts
,”
J. Mol. Liq.
,
196
, pp.
32
42
.
29.
Jeong
,
J.
,
Li
,
C.
,
Kwon
,
Y.
,
Lee
,
J.
,
Kim
,
S. H.
, and
Yun
,
R.
,
2013
, “
Particle Shape Effect on the Viscosity and Thermal Conductivity of ZnO Nanofluids
,”
Int. J. Refrig.
,
36
(
8
), pp.
2233
2241
.
30.
Murshed
,
S.
,
Leong
,
K.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2 Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(4), pp.
367
373
.
31.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Laminar Nanofluid Flow in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2652
2661
.
32.
Maxwell
,
J.
,
1873
,
A Treatise on Electricity and Magnetism
,
Oxford University Press
,
Cambridge, UK
.
33.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
,
6
(
7
), pp.
1529
1534
.
34.
Vajjha
,
R.
, and
Das
,
D.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.
35.
Timofeeva
,
E.
,
Routbort
,
J.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), p.
014304
.
36.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
37.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.
38.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics
(The Finite Volume Method),
Longman
,
Harlow, UK
.
39.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1237
1248
.
You do not currently have access to this content.