This paper concerns with calculation of heat transfer and pressure drop in a mixed-convection nanofluid flow on a permeable inclined flat plate. Solution of governing boundary layer equations is presented for some values of injection/suction parameter (f0), surface angle (γ), Galileo number (Ga), mixed-convection parameter (λ), volume fraction (φ), and type of nanoparticles. The numerical outcomes are presented in terms of average skin friction coefficient (Cf) and Nusselt number (Nu). The results indicate that adding nanoparticles to the base fluid enhances both average friction factor and Nusselt number for a wide range of other effective parameters. We found that for a nanofluid with φ = 0.6, injection from the wall (f0 = −0.2) offers an enhancement of 30% in Cf than the base fluid, while this growth is about 35% for the same case with wall suction (f0 = 0.2). However, increasing the wall suction will linearly raise the heat transfer rate from the surface, similar for all range of nanoparticles volume fraction. The computations also showed that by changing the surface angle from horizontal state to 60 deg, the friction factor becomes 2.4 times by average for all φ's, while 25% increase yields in Nusselt number for the same case. For assisting flow, there is a favorable pressure gradient due to the buoyancy forces, which results in larger Cf and Nu than in opposing flows. We can also see that for all φ values, enhancing Ga/Re2 parameter from 0 to 0.005 makes the friction factor 4.5 times, while causes 50% increase in heat transfer coefficient. Finally, we realized that among the studied nanoparticles, the maximum influence on the friction and heat transfer belongs to copper nanoparticles.

References

References
1.
Abolbashari
,
M. H.
,
Freidoonimehr
,
N.
,
Nazari
,
F.
, and
Rashidi
,
M. M.
,
2014
, “
Entropy Analysis for an Unsteady MHD Flow Past a Stretching Permeable Surface in Nano-Fluid
,”
Powder Technol.
,
267
, pp.
256
267
.
2.
Rashidi
,
M. M.
,
Momoniat
,
E.
,
Ferdows
,
M.
, and
Basiriparsa
,
A.
,
2014
, “
Lie Group Solution for Free Convective Flow of a Nanofluid Past a Chemically Reacting Horizontal Plate in a Porous Media
,”
Math. Probl. Eng.
,
2014
, p.
239082
.
3.
Ziaei-Rad
,
M.
,
Saeedan
,
M.
, and
Afshari
,
E.
,
2016
, “
Simulation and Prediction of MHD Dissipative Nanofluid Flow on a Permeable Stretching Surface Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
99
, pp.
373
382
.
4.
Garoosi
,
F.
,
Jahanshaloo
,
L.
,
Rashidi
,
M. M.
,
Badakhsh
,
A.
, and
Ali
,
M. E.
,
2015
, “
Numerical Simulation of Natural Convection of the Nanofluid in Heat Exchangers Using a Buongiorno Model
,”
Appl. Math. Comput.
,
254
, pp.
183
203
.
5.
Ziaei-Rad
,
M.
, and
Kasaeipoor
,
A.
,
2015
, “
A Numerical Study of Similarity Solution for Mixed-Convection Copper-Water Nanofluid Boundary Layer Flow Over a Horizontal Plate
,”
Modares Mech. Eng.
,
14
(
14
), p.
190
.
6.
Freidoonimehr
,
N.
,
Rashidi
,
M. M.
, and
Mahmud
,
S.
,
2015
, “
Unsteady MHD Free Convective Flow Past a Permeable Stretching Vertical Surface in a Nano-Fluid
,”
Int. J. Therm. Sci.
,
87
, pp.
136
145
.
7.
Ibrahim
,
W.
, and
Shankar
,
B.
,
2013
, “
MHD Boundary Layer Flow and Heat Transfer of a Nanofluid Past a Permeable Stretching Sheet With Velocity, Thermal and Solutal Slip Boundary Conditions
,”
Comput. Fluids
,
75
, pp.
1
10
.
8.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2011
, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1326
1332
.
9.
Serna
,
J.
,
2016
, “
Heat and Mass Transfer Mechanisms in Nanofluids Boundary Layers
,”
Int. J. Heat Mass Transfer
,
92
, pp.
173
183
.
10.
Deswita
,
L.
,
Nazar
,
R.
,
Ishak
,
A.
,
Ahmad
,
R.
, and
Pop
,
I.
,
2010
, “
Similarity Solutions for Mixed Convection Boundary Layer Flow Over a Permeable Horizontal Flat Plate
,”
Appl. Math. Comput.
,
217
(
6
), pp.
2619
2630
.
11.
Ahmed
,
H. E.
,
Ahmed
,
M. I.
, and
Yusoff
,
M. Z.
,
2015
, “
Heat Transfer Enhancement in a Triangular Duct Using Compound Nanofluids and Turbulators
,”
Appl. Therm. Eng.
,
91
, pp.
191
201
.
12.
Li
,
B.
,
Lin
,
Y.
,
Zhu
,
L.
, and
Zhang
,
W.
,
2016
, “
Effects of Non-Newtonian Behaviour on the Thermal Performance of Nanofluids in a Horizontal Channel With Discrete Regions of Heating and Cooling
,”
Appl. Therm. Eng.
,
94
, pp.
404
412
.
13.
Hamad
,
M. A.
, and
Ferdows
,
M.
,
2012
, “
Similarity Solution of Boundary Layer Stagnation-Point Flow Towards a Heated Porous Stretching Sheet Saturated With a Nanofluid With Heat Absorption/Generation and Suction/Blowing: A Lie Group Analysis
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
1
), pp.
132
140
.
14.
Rana
,
P.
,
Bhargava
,
R.
, and
Bég
,
O. A.
,
2012
, “
Numerical Solution for Mixed Convection Boundary Layer Flow of a Nanofluid Along an Inclined Plate Embedded in a Porous Medium
,”
Comput. Math. Appl.
,
64
(
9
), pp.
2816
2832
.
15.
Allan
,
F. M.
, and
Hajji
,
M. A.
,
2012
, “
On the Similarity Solution of Nano-Fluid Flow Over a Moving Flat Plate Using the Homotopy Analysis Method
,”
AIP Conf. Proc.
,
1479
(
1
), pp.
1833
1837
.
16.
Arifin
,
N. M.
,
Nazar
,
R.
, and
Pop
,
I.
,
2013
, “
Similarity Solution of Marangoni Convection Boundary Layer Flow Over a Flat Surface in a Nanofluid
,”
J. Appl. Math.
,
2013
, p.
634746
.
17.
RamReddy
,
C.
,
Murthy
,
P. V.
,
Chamkha
,
A. J.
, and
Rashad
,
A. M.
,
2013
, “
Soret Effect on Mixed Convection Flow in a Nanofluid Under Convective Boundary Condition
,”
Int. J. Heat Mass Transfer
,
64
, pp.
384
392
.
18.
Rana
,
P.
, and
Bhargava
,
R.
,
2011
, “
Numerical Study of Heat Transfer Enhancement in Mixed Convection Flow Along a Vertical Plate With Heat Source/Sink Utilizing Nanofluids
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4318
4334
.
19.
Rahman
,
M. M.
,
Al-Lawatia
,
M. A.
,
Eltayeb
,
I. A.
, and
Al-Salti
,
N.
,
2012
, “
Hydromagnetic Slip Flow of Water Based Nanofluids Past a Wedge With Convective Surface in the Presence of Heat Generation (or) Absorption
,”
Int. J. Therm. Sci.
,
57
, pp.
172
182
.
20.
Rosca
,
A. V.
,
Rosca
,
N. C.
,
Grosan
,
T.
, and
Pop
,
I.
,
2012
, “
Non-Darcy Mixed Convection From a Horizontal Plate Embedded in a Nanofluid Saturated Porous Media
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1080
1085
.
21.
Khoshvaght-Aliabadi
,
M.
,
Hormozi
,
F.
, and
Zamzamian
,
A.
,
2014
, “
Experimental Analysis of Thermal–Hydraulic Performance of Copper–Water Nanofluid Flow in Different Plate-Fin Channels
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
248
258
.
22.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2008
, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper–Water Nanofluid
,”
Int. J. Therm. Sci.
,
47
(
9
), pp.
1113
1122
.
23.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2009
, “
Study of Heat Transfer Due to Laminar Flow of Copper–Water Nanofluid Through Two Isothermally Heated Parallel Plates
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
391
400
.
24.
Turkyilmazoglu
,
M.
, and
Pop
,
I.
,
2013
, “
Heat and Mass Transfer of Unsteady Natural Convection Flow of Some Nanofluids Past a Vertical Infinite Flat Plate With Radiation Effect
,”
Int. J. Heat Mass Transf.
,
59
, pp.
167
171
.
25.
Masoumi
,
N.
,
Sohrabi
,
N.
, and
Behzadmehr
,
A.
,
2009
, “
A New Model for Calculating the Effective Viscosity of Nanofluids
,”
J. Phys. D: Appl. Phys.
,
42
(
5
), p.
055501
.
26.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer Int. J.
,
11
(
2
), pp.
151
170
.
27.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4410
4428
.
28.
Bruggeman
,
V. D.
,
1935
, “
Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen—I: Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen
,”
Ann. Phys.
,
416
(
7
), pp.
636
664
.
29.
Jones
,
D. R.
,
1973
, “
Free Convection From a Semi-Infinite Flat Plate Inclined at a Small Angle to the Horizontal
,”
Q. J. Mech. Appl. Math.
,
26
(
1
), pp.
77
98
.
You do not currently have access to this content.