Tremendous efforts had been given to ensure proper heat dissipation in electronics cooling but very seldom consider design robustness and user preferences in design principles of the heat-dissipating devices. Multi-objective optimization problems are one of the preferences elicitation tools that could be used and is highly visual on the costs and benefits associated in choosing different preferences. It would be better if a wider temperature range is offered for thermal management schemes and is made available if the user desires. It would also be sought upon if automatic determination of the user preference for a wider range of varying performance were available. In this paper, a liquid impinging heat exchanger with a thermoelectric module was chosen as the example of how this paradigmatic scheme was implemented using black box models. An orthogonal sampling method was applied with three parameters considered. The temperature at the interface between the chip surface and the liquid impinging thermoelectric cooler (LITEC) is taken as the desired response. A response surface was generated using Kriging method, after which, a multi-objective optimization problem was then formulated to include robust definition and user preference for energy efficiency. The optimal operation parameters of the inlet flow velocity and the thermoelectric (TE) chip control voltage were found for various levels of heat loading conditions and different considerations of design robustness and energy awareness.

References

References
1.
Rotem
,
E.
,
Hermerding
,
J.
,
Cohen
,
A.
, and
Cain
,
H.
,
2006
, “
Temperature Measurement in the Intel® CoreTM duo Processor
,” 12th International Workshop on Thermal Investigations of ICs and Systems, Nice, France, Sept. 27–29.
2.
Shah
,
A.
,
2014
, “
Intel Shares Details of 15-Core Xeon Chip, Ivytown
,” PCWorld, San Francisco, CA, http://www.pcworld.com/article/2096320/intels-15core-xeon-server-chip-has-431-billion-transistors.html
3.
NVIDIA Corporation,
2012
, “
NVIDIA Kepler GK110, Next-Generation CUDA Compute Architecture
,” NVIDIA Corporation, Santa Clara, CA, https://www.nvidia.com/content/PDF/kepler/NV_DS_Tesla_KCompute_Arch_May_2012_LR.pdf
4.
Hanada
,
Y.
,
Kitaoka
,
S.
, and
Xinhua
,
Y.
,
2013
, “
Optimizing Particle Simulation for Kepler GPU
,”
Procedia Eng.
,
61
, pp.
376
380
.
5.
El-Aawar
,
H.
,
2014
, “
Structural and Hardware Complexities of Microprocessor Design According to Moore's Law
,”
Int. J. Comput. Sci. Inf. Technol.
,
6
(
4
), pp. 175–183.
6.
Merritt
,
R.
,
2013
, “
Moore's Law Dead by 2022, Expert Says
,” EE Times, San Francisco, CA, http://www.eetimes.com/document.asp?doc_id=1319330
7.
Dennard
,
R. H.
,
Gaensslen
,
F. H.
,
Rideout
,
V. L.
,
Bassous
,
E.
, and
Leblanc
,
A. R.
,
1974
, “
Design of Ion-Implanted MOSFET's With Very Small Physical Dimensions
,”
IEEE J. Solid-State Circuits
,
9
(
5
), pp.
256
268
.
8.
Moore
,
G. E.
,
1998
, “
Cramming More Components Onto Integrated Circuits
,”
Proceedings of the IEEE
,
86
(
1
), pp. 82–85.
9.
Wang
,
S.
, and
Bettati
,
R.
,
2008
, “
Reactive Speed Control in Temperature-Constrained Real-Time Systems
,”
Real-Time Syst.
,
39
(
1–3
), pp.
73
95
.
10.
Sanchez
,
H.
,
Kuttanna
,
B.
,
Olson
,
T.
,
Alexander
,
M.
,
Gerosa
,
G.
,
Philip
,
R.
, and
Alvarez
,
J.
,
1997
, “
Thermal Management System for High Performance PowerPC/sup TM/Microprocessors
,”
Compcon'97
, San Jose, CA, Feb. 23–26, pp.
325
330
.
11.
Hsu
,
K. S.
,
Manuel
,
M. C. E.
,
Lin
,
S.-P.
,
Li
,
Z.
, and
Lin
,
P. T.
,
2014
, “
Robust Design Optimization of A Liquid-Impinging Thermoelectric Cooler (LITEC)
,”
International Symposium on Reliability Engineering and Risk Management
(ISRERM), Taipei, Taiwan, Paper No. FA1-2.
12.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
568
585
.
13.
Mahajan
,
R.
,
Chiu
,
C.-P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1476
1486
.
14.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
, and
Joshi
,
Y.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.
15.
Zhang
,
J.
,
Lin
,
P. T.
, and
Jaluria
,
Y.
,
2013
, “
Design and Optimization of Multiple Microchannel Heat Transfer Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
011004
.
16.
Lin
,
P. T.
,
Chang
,
C.-J.
,
Huang
,
H.
, and
Zheng
,
B.
,
2011
, “
Design of Cooling System for Electronic Devices Using Impinging Jets
,”
COMSOL
Conference
, Boston, MA.
17.
Patel
,
H.
,
2013
, “
Immersion Cooling of High End Data Center Server and Validation Through Experiments
,”
M.A. thesis
, University of Texas at Arlington, Arlington, TX.
18.
Lu
,
T.
,
2000
, “
Thermal Management of High Power Electronics With Phase Change Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2245
2256
.
19.
Xenon Magazine,
2009
, “
AMD Ownage: AMD Phenom II X4 CPU Reache 6.5GHz
,” Xenon Magazine, accessed Jan. 25, 2017,
http://www.xenonmagazine.com/showthread.php?p=3786
20.
Xie
,
H.
,
Aghazadeh
,
M.
, and
Toth
,
J.
,
1995
, “
The Use of Heat Pipes in the Cooling of Portables With High Power Packages-A Case Study With the Pentium Processor-Based Notebooks and Sub-Notebooks
,”
45th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, May 21–24, pp.
906
913
.
21.
Kim
,
K.-S.
,
Won
,
M.-H.
,
Kim
,
J.-W.
, and
Back
,
B.-J.
,
2003
, “
Heat Pipe Cooling Technology for Desktop PC CPU
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1137
1144
.
22.
Darabi
,
J.
, and
Ekula
,
K.
,
2003
, “
Development of a Chip-Integrated Micro Cooling Device
,”
Microelectron. J.
,
34
(
11
), pp.
1067
1074
.
23.
Riffat
,
S. B.
, and
Ma
,
X.
,
2003
, “
Thermoelectrics: A Review of Present and Potential Applications
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
913
935
.
24.
Tellurex
,
2010
, “
Introduction to Thermoelectrics
,” Tellurex Corporation, Traverse City, MI, www.tellurex.com
25.
Sano
,
S.
,
Mizukami
,
H.
, and
Kaibe
,
H.
,
2003
, “
Development of High-Efficiency Thermoelectric Power Generation System
,” Komat'su Technical Report, Report No. 152-05_E.
26.
Rasheed
,
F. F.
,
Jasim
,
S. Y.
, and
Jassim
,
J. M.
,
2012
, “
Controlling the Wavelength of a High Power Diode Laser Using Thermoelectric Cooler
,”
Iraqi J. Phys.
,
10
(
17
), pp.
66
70
.
27.
Wang
,
L. Q.
,
Zhou
,
L.
, and
Fan
,
H. T.
,
2013
, “
Design of Cooling System for Infrared CCD Camera Used to Monitor Burden Surface of Blast Furnace Based on Thermoelectric Coolers
,”
Appl. Mech. Mater.
,
419
, pp.
778
783
.
28.
Sharp
,
J.
,
Bierschenk
,
J.
, and
Lyon
,
H. B.
,
2006
, “
Overview of Solid-State Thermoelectric Refrigerators and Possible Applications to on-Chip Thermal Management
,”
Proc. IEEE
,
94
(
8
), pp.
1602
1612
.
29.
Wang
,
S.-H.
,
2011
, “
Graphics Card and Heat Dissipation Method Thereof
,” .
30.
Fairbanks
,
J. W.
,
2012
, “
Automotive Thermoelectric Generators and HVAC
,” Directions in Engine-Efficiency and Emissions Research Conference (
DEER
), Dearborn, MI, Oct. 16–19.
31.
Hsu
,
K. S.
,
Manuel
,
M. C. E.
,
Lin
,
S.-P.
, and
Lin
,
P. T.
,
2015
, “
Measurement of Energy Efficiency of A Robustly Designed Liquid-Impinging Thermoelectric Cooler (LITEC)
,”
Cross-Strait Conference on Measurement and Inspection Technologies
(
CSCMIT
), Chungli, Taoyuan, Taiwan, Paper No. O01-0025.
32.
Hebei
,
I. T.
,
2017
, “
Thermoelectric Cooler TEC1-12706
,” Hebei I.T. (Shanghai) Co., Ltd., Shanghai, China, accessed Jan. 31, 2017, http://peltiermodules.com/peltier.datasheet/TEC1-12706.pdf
33.
Corning,
2017
, “
Corning® 5 x 7 Inch Top PC-420D Stirring Hot Plate With Digital Displays, 120V/60Hz (Product #6795-420D)
,” Corning, Inc., Corning, NY, accessed Jan. 31, 2017, https://catalog2.corning.com/lifesciences/en-us/shopping/productdetails.aspx?productid=6795-420d
34.
Omega
,
2017
, “
Revised Thermocouple Reference Tables: Type T
,” Omega, Stamford, CT, http://www.omega.com/temperature/z/pdf/z207.pdf
35.
Hsu
,
K. S.
,
Manuel
,
M. C. E.
,
Lin
,
P. T.
, and
Peng
,
Y.-R.
,
2015
, “
Measurements of Interfacial Heat Flux for Accurate Numerical Simulations of A Liquid Impinging Thermoelectric Cooler (LITEC)
,”
The 7th International Symposium on Precision Mechanical Measurements
(ISPMM), Xiamen, Fujian, China, Aug. 7–12, Paper No. F-119.
36.
Taguchi
,
G.
,
Clausing
,
D.
, and
Watanabe
,
L. T.
,
1987
,
System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs
,
UNIPUB/Kraus International Publications
,
White Plains, NY
.
37.
Woolf
,
P.
,
2007
, “
Design of Experiments: Taguchi Methods
,”
Chemical Process Dynamics and Controls
,
University of Michigan
,
Ann Arbor, MI
.
38.
Simpson
,
T. W.
,
Lin
,
D. K.
, and
Chen
,
W.
,
2001
, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
,
2
(
3
), pp.
209
240
.
39.
Box
,
G. E.
, and
Wilson
,
K.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
13
(
1
), pp.
1
45
.
40.
Krige
,
D.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. Chem., Metall. Min. Soc. S. Afr.
, 52(6), pp. 119–139.
41.
Lebensztajn
,
L.
,
Marretto
,
C. A. R.
,
Costa
,
M. C.
, and
Coulomb
,
J.-L.
,
2004
, “
Kriging: A Useful Tool for Electromagnetic Device Optimization
,”
IEEE Trans. Magn.
,
40
(
2
), pp.
1196
1199
.
42.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1995
, “
An Overview of Evolutionary Algorithms in Multiobjective Optimization
,”
Evol. Comput.
,
3
(
1
), pp.
1
16
.
43.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
44.
Branke
,
J.
, and
Deb
,
K.
,
2005
, “
Integrating User Preferences into Evolutionary Multi-Objective Optimization
,”
Knowledge Incorporation in Evolutionary Computation
, Y. Jin, ed.,
Springer-Verlag
, Berlin, pp.
461
477
.
45.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2010
, “
The Weighted sum Method for Multi-Objective Optimization: New Insights
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
853
862
.
46.
Queipo
,
N. V.
,
Humphrey
,
J. A. C.
, and
Ortega
,
A.
,
1998
, “
Multiobjective Optimal Placement of Convectively Cooled Electronic Components on Printed Wiring Boards
,”
IEEE Trans. Compon. Packag. Manuf. Technol., Part A
,
21
(
1
), pp.
142
153
.
47.
Kasabov
,
N. K.
,
1998
,
Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
,
MIT Press
,
Cambridge, MA
.
48.
Erbas
,
I.
,
Bitterman
,
M. S.
, and
Stouffs
,
R.
,
2011
, “
Use of a Knowledge Model for Integrated Performance Evaluation for Housing (Re)Design Towards Environmental Sustainability: A Case Study
,” Computer Aided Architectural Design Futures Conference (
CAAD
), Liege, Belgium, pp.
281
295
.
49.
Lin
,
P. T.
, and
Gea
,
H. C.
,
2013
, “
A Gradient-Based Transformation Method in Multidisciplinary Design Optimization
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
715
733
.
50.
Lin
,
P. T.
, and
Gea
,
H. C.
,
2013
, “
Reliability-Based Multidisciplinary Design Optimization Using Probabilistic Gradient-Based Transformation Method
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021001
.
51.
Chou
,
Y.-C.
, and
Lin
,
P. T.
,
2014
, “
An Efficient and Robust Design Optimization of Multi-State Flow Network for Multiple Commodities Using Generalized Reliability Evaluation Algorithm and Edge Reduction Method
,”
Int. J. Syst. Sci.
, 46(14), pp. 2659–2672.
52.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Dimension Reduction Method for Reliability-Based Robust Design Optimization
,”
Comput. Struct.
,
86
(13–14), pp.
1550
1562
.
You do not currently have access to this content.