The effect of rotation on jet impingement cooling is experimentally investigated in this study. Pressurized cooling air is supplied to a smooth, square channel in the radial outward direction. To model leading edge impingement in a gas turbine, jets are formed from a single row of discrete holes. The cooling air from the first pass is expelled through the holes, with the jets impinging on a semi-circular, concave surface. The inlet Reynolds number varied from 10,000 to 40,000 in the square supply channel. The rotation number and buoyancy parameter varied from 0 to 1.4 and 0 to 6.6 near the inlet of the channel, and as coolant is extracted for jet impingement, the rotation and buoyancy numbers can exceed 10 and 500 near the end of the passage. The average jet Reynolds number varied from 6000 to 24,000, and the jet rotation number varied from 0 to 0.13. For all test cases, the jet-to-jet spacing (s/djet = 4), the jet-to-target surface spacing (l/djet = 3.2), and the impingement surface diameter-to-diameter (D/djet = 6.4) were held constant. A steady-state technique was implemented to determine regionally averaged Nusselt numbers on the leading and trailing surfaces inside the supply channel and three spanwise locations on the concave target surface. It was observed that in all rotating test cases, the Nusselt numbers deviated from those measured in a nonrotating channel. The degree of separation between the leading and trailing surface increased with increasing rotation number. Near the inlet of the channel, heat transfer was dominated by entrance effects, however moving downstream, the local rotation number increased, and the effect of rotation was more pronounced. The effect of rotation on the target surface was most clearly seen in the absence of crossflow. With pure jet impingement, the deflection of the impinging jet combined with the rotation-induced secondary flows offered increased mixing within the impingement cavity and enhanced heat transfer. In the presence of strong crossflow of the spent air, the same level of heat transfer is measured in both the stationary and rotating channels.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
2.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
4.
Chupp
,
R. E.
,
Helms
,
D. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement-Cooled Turbine Airfoils
,”
AIAA J. Aircr.
,
6
(
3
), pp.
203
208
.
5.
Fénot
,
M.
,
Dorignac
,
E.
, and
Vullierme
,
J. J.
,
2008
, “
An Experimental Study on Hot Round Jets Impinging on a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
945
956
.
6.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part 1: Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
7.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2006
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading Edge With and Without Showerhead and Gill Film Holes
,”
ASME J. Turbomach.
,
128
(
2
), pp.
310
320
.
8.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
.
9.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
(
4
), pp.
682
691
.
10.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Study of Impingement on Roughened Airfoil Leading Edge Walls With Film Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
766
773
.
11.
Martin
,
E. L.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Computational Investigation of Jet Impingement on Turbine Blade Leading Edge Cooling With Engine-Like Temperatures
,”
ASME
Paper No. GT2012-68811.
12.
Martin
,
E. L.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Impingement Heat Transfer Enhancement on a Cylindrical, Leading Edge Model With Varying Jet Temperatures
,”
ASME
Paper No. GT2012-68817.
13.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries
,”
ASME
Paper No. GT2012-68818.
14.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
.
15.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.
16.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
(
4
), pp.
738
744
.
17.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1994
, “
Wall Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
37
(
9
), pp.
1411
1420
.
18.
Zhang
,
Y. M.
,
Han
,
J. C.
,
Parsons
,
J. A.
, and
Lee
,
C. P.
,
1995
, “
Surface Heating Effects on Local Heat Transfer in a Rotating Two-Pass Square Channel With 60 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
117
(
2
), pp.
272
278
.
19.
Dutta
,
S.
, and
Han
,
J. C.
,
1996
, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
578
584
.
20.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer in Rotating Rectangular Channels (AR=4) With Angled Ribs
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
617
625
.
21.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
4
), pp.
164
174
.
22.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2006
, “
Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45-Degree Ribbed Walls
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1130
1141
.
23.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1995
, “
Effects of Model Orientation and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Square Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
38
(
7
), pp.
1151
1159
.
24.
Wright
,
L. M.
,
Lee
,
E.
, and
Han
,
J. C.
,
2004
, “
Effect of Rotation on Heat Transfer in Rectangular Channels With Pin-Fins
,”
AIAA J. Thermophys. Heat Transfer
,
18
(
2
), pp.
263
272
.
25.
Zhou
,
F.
,
Lagrone
,
J.
, and
Acharya
,
S.
,
2004
, “
Internal Cooling in 4:1 AR Passages at High Rotation Numbers
,”
ASME
Paper No. GT2004-53501.
26.
Wright
,
L. M.
,
Liu
,
Y. H.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071701
.
27.
Liu
,
Y. H.
,
Huh
,
M.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer in Trailing-Edge Channels With Slot Ejection Under High Rotation Numbers
,”
AIAA J. Thermophys. Heat Transfer
,
23
(
2
), pp.
305
315
.
28.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2009
, “
High Rotation Number Effect on Heat Transfer in a Triangular Channel With 45 Deg, Inverted 45 Deg, and 90 Deg Ribs
,”
ASME
Paper No. GT2009-59216.
29.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.
30.
Rallabandi
,
A. P.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.
31.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J. C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.
32.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1998
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Radially Outward Crossflow
,”
ASME J. Turbomach.
,
120
(
1
), pp.
79
85
.
33.
Parsons
,
J. A.
, and
Han
,
J. C.
,
1998
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Heated Target Walls and Radially Outward Cross Flow
,”
Int. J. Heat Mass Transfer
,
41
(
13
), pp.
2059
2071
.
34.
Parsons
,
J. A.
, and
Han
,
J. C.
,
1996
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Heated Target Walls and Film Coolant Extraction
,”
ASME
Paper No. 96-WA/HT-9.
35.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
2003
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Film Coolant Extraction
,”
ASME
Paper No. GT2003-38905.
36.
Akella
,
K. V.
, and
Han
,
J. C.
,
1998
, “
Impingement Cooling in Rotating Two-Pass Rectangular Channels
,”
AIAA J. Thermophys. Heat Transfer
,
12
(
4
), pp.
582
588
.
37.
Akella
,
K. V.
, and
Han
,
J. C.
,
1999
, “
Impingement Cooling in Rotating Two-Pass Rectangular Channels With Ribbed Walls
,”
AIAA J. Thermophys. Heat Transfer
,
13
(
3
), pp.
364
371
.
38.
Lamont
,
J. A.
, and
Ekkad
,
S. V.
,
2011
, “
Effects of Rotation on Jet Impingement Channel Heat Transfer
,”
ASME
Paper No. GT2011-45744.
39.
Epstein
,
A. H.
,
Kerrebrock
,
J. L.
,
Koo
,
J. J.
, and
Preiser
,
U. Z.
,
1985
, “
Rotational Effects on Impingement Cooling
,” MIT GTL Report No. 184.
40.
Mattern
,
C.
, and
Hennecke
,
D. K.
,
1996
, “
The Influence of Rotation on Impingement Cooling
,”
ASME
Paper No. 96-GT-161.
41.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2008
, “
Heat/Mass Transfer Measurement on Concave Surface in Rotating Jet Impingement
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1952
1958
.
42.
Wright
,
L. M.
, and
Elston
,
C. A.
,
2012
, “
Experimental Investigation of Heat Transfer in a Leading Edge, Two-Pass Serpentine Passage at High Rotation Numbers
,”
ASME
Paper No. HT2012-58360.
43.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.