This paper presents the results of an experimental study of ionic wind heat transfer enhancement in internal rectangular channels. Ionic wind is a potential technique to enhance natural convection cooling noise-free and without using moving part and thus ensuring a high reliability and a long lifetime. The goal of the present study is twofold: first, the multiphysics numerical model of ionic wind developed in previous work is validated experimentally. Second, the potential of the heat sink concept combining a fin array with an ionic wind generator is demonstrated by building a technology demonstrator. The heat sink presented in this work dissipates 240 W on a baseplate geometry of 200 × 263 mm. It is shown that the baseplate temperature can be reduced from 100 °C under natural convection to 81 °C when the ionic wind generator is turned on.

References

References
1.
Steinke
,
M. E.
,
2012
,
Contemporary Perspectives on Air Cooling of Electronic Components
,
Begell House Publishers
,
Danbury, CT
.
2.
Hsu
,
C. P.
,
Sticht
,
C.
,
Jewell-Larsen
,
N. E.
,
Fox
,
M.
,
Krichtafovitch
,
I. A.
, and
Mamishev
,
A. V.
,
2008
, “
Characterization of Microfabricated Cantilever-to-Plane Electrostatic Fluid Accelerators for Cooling in Electronics
,”
ASME
Paper No. IMECE2007-42104.
3.
Go
,
D. B.
,
Maturana
,
R. A.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2008
, “
Enhancement of External Forced Convection by Ionic Wind
,”
Int. J. Heat Mass Transfer
,
51
(25–26), pp.
6047
6053
.
4.
Go
,
D. B.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation Monte Carlo Analysis of Microscale Field Emission and Ionization of Atmospheric Air
,”
ASME
Paper No. IMECE2006-14476.
5.
Wang
,
P.
,
Fan
,
F.-G.
,
Zirilli
,
F.
, and
Chen
,
J.
,
2012
, “
A Hybrid Model to Predict Electron and Ion Distributions in Entire Interelectrode Space of a Negative Corona Discharge
,”
IEEE Trans. Plasma Sci.
,
40
(
2
), pp.
421
428
.
6.
Cagnoni
,
D.
,
Agostini
,
F.
,
Christen
,
T.
,
Parolini
,
N.
,
Stevanovic
,
I.
, and
de Falco
,
C.
,
2013
, “
Multiphysics Simulation of Corona Discharge Induced Ionic Wind
,”
J. Appl. Phys.
,
114
(
23
), p.
233301
.
7.
Gallandat
,
N.
, and
Mayor
,
J. R.
,
2015
, “
Novel Heat Sink Design Utilizing Ionic Wind for Efficient Passive Thermal Management of Grid-Scale Power Routers
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
031004
.
8.
Gallandat
,
N.
, and
Mayor
,
J. R.
,
2015
, “
Errata to the Paper Novel Heat Sink Design Utilizing Ionic Wind for Efficient Passive Thermal Management of Grid-Scale Power Routers
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p. 031004.
9.
Junhong
,
C.
, and
Davidson
,
J. H.
,
2002
, “
Electron Density and Energy Distributions in the Positive DC Corona: Interpretation for Corona-Enhanced Chemical Reactions
,”
Plasma Chem. Plasma Process.
,
22
(
2
), pp.
199
224
.
10.
Stuetzer
,
O. M.
,
1959
, “
Ion Drag Pressure Generation
,”
J. Appl. Phys.
,
30
(
7
), pp.
984
994
.
11.
Owsenek
,
B. L.
, and
Seyed-Yagoobi
,
J.
,
1997
, “
Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
604
610
.
12.
Barnes
,
J. W.
,
1994
,
Statistical Analysis for Engineers and Scientists: A Computer-Based Approach
,
McGraw-Hill
,
New York
.
13.
Incropera
,
F. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
14.
Holman
,
J. P.
,
1990
,
Heat Transfer
,
7th ed.
,
McGraw-Hill
,
New York
.
15.
Ong
,
A. O.
,
Abramson
,
A. R.
, and
Tien
,
N. C.
,
2014
, “
Electrohydrodynamic Microfabricated Ionic Wind Pumps for Thermal Management Applications
,”
ASME J. Heat Transfer
,
136
(
6
), p.
061703
.
16.
June
,
M. S.
,
Kribs
,
J.
, and
Lyons
,
K. M.
,
2014
, “
Integrated Ionic Flow Device and Heat Sink as a Fan Sink Alternative
,”
Proceedings of the ESA Annual Meeting on Electrostatics
, Notre Dame, IN, June 17–19.
17.
Hesse
,
D. L.
,
Mayor
,
J. R.
, and
Semidey
,
S. A.
,
2014
, “
Analytical Modeling of Dual-Loop Single Phase Thermosiphons for Power Electronics Cooling
,”
ASME
Paper No. IMECE2014-38718.
18.
Schulz
,
M.
,
2011
, “
Thermal Interface–A Key Factor in Improving Lifetime in Power Electronics
,”
International Exhibition and Conference for Power Electronics, Intelligent Motion and Power Quality
, Nuremburg, Germany, May 8–10, pp.
1317
1321
.
You do not currently have access to this content.