According to the particular aerodynamic heating loads which hypersonic aerospace aircrafts suffered from in-service environment, a lightweight integrated thermal protection system (ITPS) named pyramidal core sandwich panel is designed. This is considered not only as an insulation structure but also a load-bearing structure. Compared to traditional thermal protection systems (TPSs), the sandwich panel has simultaneous lightweight, load-bearing, and excellent thermal protection property. The finite-element heat transfer analysis for the pyramidal core sandwich structure is performed, and the distributions of temperature in the structure are presented. Then sequential coupling method is adopted to analyze the thermomechanical performance of the structure and presentations of field of stress and displacement under aerodynamic and thermal load are provided. A comparison between corrugated-core sandwich panels and pyramidal core sandwich panels from the perspectives of heat insulation, strength, and mass is carried out. The results indicate that the particular performance of pyramidal-core structure is superior to that of corrugated-core structure.

References

References
1.
Ferraiuolo
,
M.
,
Manca
,
O.
, and
Riccio
,
A.
,
2009
, “
A Procedure to Evaluate the Thermal Response of a Multilayered Thermal Protection System Subjected to Aerodynamic Heating
,”
ASME
Paper No. IMECE 2009-12327.
2.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(3–4), pp.
309
327
.
3.
Chen
,
C.
,
Lu
,
T. J.
, and
Fleck
,
N. A.
,
1999
, “
Effect of Imperfection on the Yielding of Two-Dimensional Foams
,”
J. Mech. Phys. Solids
,
47
(
11
), pp.
2235
2272
.
4.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.
5.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2004
, “
Fluid-Flow and Endwall Heat-Transfer Characteristics of an Ultralight Lattice-Frame Material
,”
Int. J. Heat Mass Transfer
,
47
(6–7), pp.
1129
1140
.
6.
Liu
,
J. S.
, and
Lu
,
T. J.
,
2004
, “
Multi-Objective and Multi-Loading Optimization of Ultra-Light Weight Truss Materials
,”
Int. J. Solids Struct.
,
41
(3–4), pp.
649
635
.
7.
Kim
,
T.
,
Zhao
,
T. J.
, and
Hodson
,
H. P.
,
2007
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(8), pp.
767
780
.
8.
Zhu
,
H.
,
Sankar
,
B.
,
Haftka
,
R.
,
Haftka
,
R. T.
, and
Blosser
,
M.
,
2005
, “
Evaluation of Integrated Sandwich TPS Design With Metal Foam Core for Launch Vehicles
,”
AIAA
Paper No. 2005-2181.
9.
Bapanapalli
,
S. K.
,
Martinez
,
O. A.
,
Gogu
,
C.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
, and
Blosser
,
M. L.
,
2006
, “
Analysis and Design of Corrugated Core Sandwich Panels for Thermal Protection Systems of Space Vehicles
,”
AIAA
Paper No. 2006-1942.
10.
Wadley
,
H. N. G.
, and
Douglas
,
T. Q.
,
2007
, “
Thermal Applications of Cellular Lattice Structures
,”
Mater. Sci. Forum
,
539–543
, pp.
242
247
.
11.
Frostig
,
Y.
, and
Thomsen
,
O. T.
,
2008
, “
Non-Linear Response of Sandwich Panels With a Flexible Core and Temperature Dependent Mechanical Properties
,”
Composites, Part B
,
39
(
1
), pp.
165
184
.
12.
Gogu
,
C.
,
Bapanapalli
,
S. K.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2009
, “
Comparison of Materials for an Integrated Thermal Protection System for Spacecraft Reentry
,”
AIAA J. Spacecr. Rockets
,
46
(
3
), pp.
501
513
.
13.
Martinez
,
O. A.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
,
Bapanapalli
,
S. K.
, and
Blosser
,
M. L.
,
2007
, “
Micromechanical Analysis of Composite Corrugated-Core Sandwich Panels for Integral Thermal Protection Systems
,”
AIAA J. Spacecr. Rockets
,
45
(9), pp.
2323
2336
.
14.
Martinez
,
O. A.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
, and
Blosser
,
M. L.
,
2010
, “
Thermal Force and Moment Determination of an Integrated Thermal Protection System
,”
AIAA J. Spacecr. Rockets
,
48
(1), pp.
119
128
.
15.
Martinez
,
O. A.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
, and
Blosser
,
M. L.
,
2012
, “
Two-Dimensional Orthotropic Plate Analysis for an Integral Thermal Protection System
,”
AIAA J. Spacecr. Rockets
,
50
(
2
), pp.
387
398
.
16.
Frostig
,
Y.
, and
Thomsen
,
O. T.
,
2011
, “
Non-Linear Thermos-Mechanical Behavior of Delaminated Curved Sandwich Panels With a Compliant Core
,”
Int. J. Solids Struct.
,
48
(14–15), pp.
2218
2237
.
17.
Cheng
,
X.
,
Wei
,
K.
,
He
,
R.
,
He
,
Y.
,
Pei
,
Y.
, and
Fang
,
D.
,
2015
, “
The Equivalent Thermal Conductivity of Lattice Core Sandwich Structure: A Predictive Model
,”
Appl. Therm. Eng.
,
93
, pp.
236
243
.
18.
Xie
,
G. N.
,
Wang
,
Q.
, and
Sunden
,
B.
,
2013
, “
Thermalmechanical Optimization of Lightweight Thermal Protection System Under Aerodynamic Heating
,”
Appl. Therm. Eng.
,
59
(1–2), pp.
425
434
.
19.
Blosser
,
M. L.
,
Chen
,
R. R.
,
Schmidt
,
I. H.
,
Dorsey
,
J. T.
,
Poteet
,
C. C.
,
Bird
,
R. K.
, and
Wurster
,
K. E.
,
2004
, “
Development of Advanced Metallic Thermal Protection System Prototype Hardware
,”
AIAA J. Spacecr. Rockets
,
41
(
2
), pp.
183
194
.
20.
Blosser
,
M. L.
,
2004
, “
Fundamental Modeling and Thermal Performance Issues for Metallic Thermal Protection System Concept
,”
AIAA J. Spacecr. Rockets
,
41
(2), pp.
195
206
.
21.
Dorsey
,
J. T.
,
Poteet
,
C. C.
, and
Wurster
,
K. E.
,
2010
, “
Metallic Thermal Protection System Requirements, Environments, and Integrated Concepts
,”
AIAA J. Spacecr. Rockets
,
41
(
2
), pp.
162
173
.
You do not currently have access to this content.