In this study, the performance evaluation and optimization of a recently developed battery-powered vehicle air conditioning (BPVAC) system is investigated. A mathematical model is developed to simulate the thermodynamic and heat transfer characteristics of the BPVAC system and calculate the coefficient of performance (COP). Utilizing environmental chambers and a number of measuring equipment, an experimental setup is built to validate the model accuracy and to conduct performance optimization by changing the charge of refrigerant in the system. The model is validated and employed for performance simulation and optimization in a wide range of speed for the evaporator and condenser fans. The modeling results verify that for any operating condition an optimum performance can be achieved by adjusting the speed of condenser and evaporator fans. The optimum refrigerant charge is obtained, and a potential improvement of 10.5% is calculated for the performance of system under ANSI/AHRI 210/240-2008 specifications.

References

References
1.
Gaines
,
L.
,
Rask
,
E.
, and
Keller
,
G.
,
2012
, “
Which is Greener: Idle, or Stop and Restart? Comparing Fuel Use and Emissions for Short Passenger Car Stops
,”
TRB
2013 Annual Meeting.http://docs.trb.org/prp/13-4606.pdf
2.
Gaines
,
L.
,
2012
, “
Idling Reduction for Medium-Duty Fleets
,”
Green Fleets Conference
, Schaumberg, IL, Oct. 2–3.https://anl.app.box.com/s/33qyoebhcwko0ze8c8aj256dofmv312o
3.
Stodolsky
,
F.
,
Gaines
,
L.
, and
Vyas
,
A.
,
2000
, “
Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks
,” Center for Transportation Research, Argonne National Laboratory, U.S. Department of Energy,
Report No. ANL/ESD-43
.http://www.osti.gov/scitech/biblio/771201
4.
MacDonald
,
C.
,
Douglas
,
R.
,
Tamayol
,
A.
, and
Bahrami
,
M.
,
2012
, “
A Feasibility Study of Auxiliary HVAC Systems for Reducing Idling Time of Long Haul Trucks
,”
ASME
Paper No. HT2012-58353.
5.
Afram
,
A.
, and
Janabi-Sharifi
,
F.
,
2014
, “
Review of Modeling Methods for HVAC Systems
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
507
519
.
6.
Anand
,
S.
,
Gupta
,
A.
, and
Tyagi
,
S. K.
,
2013
, “
Simulation Studies of Refrigeration Cycles: A Review
,”
Renewable Sustainable Energy Rev.
,
17
, pp.
260
277
.
7.
Ding
,
G.
,
2007
, “
Recent Developments in Simulation Techniques for Vapour-Compression Refrigeration Systems
,”
Int. J. Refrig.
,
30
(
7
), pp.
1119
1133
.
8.
Hermes
,
C. J. L.
,
Melo
,
C.
,
Knabben
,
F. T.
, and
Gonçalves
,
J. M.
,
2009
, “
Prediction of the Energy Consumption of Household Refrigerators and Freezers Via Steady-State Simulation
,”
Appl. Energy
,
86
(
7–8
), pp.
1311
1319
.
9.
Boeng
,
J.
, and
Melo
,
C.
,
2014
, “
Mapping the Energy Consumption of Household Refrigerators by Varying the Refrigerant Charge and the Expansion Restriction
,”
Int. J. Refrig.
,
41
, pp.
37
44
.
10.
Lee
,
G. H.
, and
Yoo
,
J. Y.
,
2000
, “
Performance Analysis and Simulation of Automobile Air Conditioning System
,”
Int. J. Refrig.
,
23
(
3
), pp.
243
254
.
11.
Cho
,
H.
,
Lee
,
H.
, and
Park
,
C.
,
2013
, “
Performance Characteristics of an Automobile Air Conditioning System With Internal Heat Exchanger Using Refrigerant R1234yf
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
563
569
.
12.
Green
,
T.
,
Izadi-Zamanabadi
,
R.
,
Razavi-Far
,
R.
, and
Niemann
,
H.
,
2014
, “
Plant-Wide Dynamic and Static Optimisation of Supermarket Refrigeration Systems
,”
Int. J. Refrig.
,
38
, pp.
106
117
.
13.
Al-Rashed
,
A. A. A. A.
,
2011
, “
Effect of Evaporator Temperature on Vapor Compression Refrigeration System
,”
Alexandria Eng. J.
,
50
(
4
), pp.
283
290
.
14.
Sahin
,
B.
, and
Kodal
,
A.
,
2002
, “
Thermoeconomic Optimization of a Two Stage Combined Refrigeration System: A Finite-Time Approach
,”
Int. J. Refrig.
,
25
(
7
), pp.
872
877
.
15.
Joudi
,
K. A.
,
Mohammed
,
A. S. K.
, and
Aljanabi
,
M. K.
,
2003
, “
Experimental and Computer Performance Study of an Automotive Air Conditioning System With Alternative Refrigerants
,”
Energy Convers. Manage.
,
44
(
18
), pp.
2959
2976
.
16.
Han
,
X. H.
,
Li
,
P.
,
Xu
,
Y. J.
,
Zhang
,
Y. J.
,
Wang
,
Q.
, and
Chen
,
G. M.
,
2013
, “
Cycle Performances of the Mixture HFC-161 + HFC-134a as the Substitution of HFC-134a in Automotive Air Conditioning Systems
,”
Int. J. Refrig.
,
36
(
3
), pp.
913
920
.
17.
Yoo
,
S. Y.
, and
Lee
,
D. W.
,
2009
, “
Experimental Study on Performance of Automotive Air Conditioning System Using R-152a Refrigerant
,”
Int. J. Automot. Technol.
,
10
(
3
), pp.
313
320
.
18.
Brown
,
J. S.
,
Yana-motta
,
S. F.
, and
Domanski
,
P. A.
,
2002
, “
Comparitive Analysis of an Automotive Air Conditioning Systems Operating With CO2 and R134a
,”
Int. J. Refrig.
,
25
(
1
), pp.
19
32
.
19.
Ratts
,
E. B.
, and
Brown
,
J. S.
,
2000
, “
An Experimental Analysis of Cycling in an Automotive Air Conditioning System
,”
Appl. Therm. Eng.
,
20
(
11
), pp.
1039
1058
.
20.
Wang
,
S.
,
Gu
,
J.
,
Dickson
,
T.
,
Dexter
,
J.
, and
McGregor
,
I.
,
2005
, “
Vapor Quality and Performance of an Automotive Air Conditioning System
,”
Exp. Therm. Fluid Sci.
,
30
(
1
), pp.
59
66
.
21.
Macagnan
,
M. H.
,
Copetti
,
J. B.
,
Souza
,
R. B.
,
Reichert
,
R. K.
, and
Amaro
,
M.
,
2013
, “
Analysis of the Influence of Refrigerant Charge and Compressor Duty Cycle in an Automotive Air Conditioning System
,”
22nd International Congress of Mechanical Engineering
(
COBEM 2013
), Ribeirao Preto, Brazil, Nov. 3–7, pp.
6151
6161
.http://www.abcm.org.br/app/webroot/anais/cobem/2013/_PDF/1415.pdf
22.
Alkan
,
A.
, and
Hosoz
,
M.
,
2010
, “
Comparative Performance of an Automotive Air Conditioning System Using Fixed and Variable Capacity Compressors
,”
Int. J. Refrig.
,
33
(
3
), pp.
487
495
.
23.
Jabardo
,
J. M. S.
,
Mamani
,
W. G.
, and
Ianella
,
M. R.
,
2002
, “
Modeling and Experimental Evaluation of an automotive Air Conditioning System With a Variable Capacity Compressor
,”
Int. J. Refrig.
,
25
(
8
), pp.
1157
1172
.
24.
Tian
,
C.
, and
Li
,
X.
,
2005
, “
Numerical Simulation on Performance Band of Automotive Air Conditioning System With a Variable Displacement Compressor
,”
Energy Convers. Manage.
,
46
(
17
), pp.
2718
2738
.
25.
Koury
,
R. N. N.
,
Machado
,
L.
, and
Ismail
,
K. A. R.
,
2001
, “
Numerical Simulation of a Variable Speed Refrigeration System
,”
Int. J. Refrig.
,
24
(
2
), pp.
192
200
.
26.
Borges
,
B. N.
,
Hermes
,
C. J. L.
,
Gonçalves
,
J. M.
, and
Melo
,
C.
,
2011
, “
Transient Simulation of Household Refrigerators: A Semi-Empirical Quasi-Steady Approach
,”
Appl. Energy
,
88
(
3
), pp.
748
754
.
27.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
, Hoboken, NJ.
28.
Liang
,
N.
,
Shao
,
S.
,
Tian
,
C.
, and
Yan
,
Y.
,
2010
, “
Dynamic Simulation of Variable Capacity Refrigeration Systems Under Abnormal Conditions
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1205
1214
.
29.
Browne
,
M. W.
, and
Bansal
,
P. K.
,
2002
, “
Transient Simulation of Vapour-Compression Packaged Liquid Chillers
,”
Int. J. Refrig.
,
25
(
5
), pp.
597
610
.
30.
Beatty
,
K.
, and
Katz
,
D.
,
1948
, “
Condensation of Vapours on the Outside of Finned Tube
,”
Chem. Eng. Prog.
,
44
(
1
), pp.
66
70
.
31.
Zhao
,
L.
,
Cai
,
W.
,
Ding
,
X.
, and
Chang
,
W.
,
2013
, “
Model-Based Optimization for Vapor Compression Refrigeration Cycle
,”
Energy
,
55
, pp.
392
402
.
32.
Jolly
,
P. G.
,
Tso
,
C. P.
,
Wong
,
Y. W.
, and
Ng
,
S. M.
,
2000
, “
Simulation and Measurement on the Full-Load Performance of a Refrigeration System in a Shipping Container
,”
Int. J. Refrig.
,
23
(
2
), pp.
112
126
.
33.
Abbasbandy
,
S.
,
2003
, “
Improving Newton–Raphson Method for Nonlinear Equations by Modified Adomian Decomposition Method
,”
Appl. Math. Comput.
,
145
(
2–3
), pp.
887
893
.
34.
Tassou
,
S. A.
, and
Grace
,
I. N.
,
2005
, “
Fault Diagnosis and Refrigerant Leak Detection in Vapour Compression Refrigeration Systems
,”
Int. J. Refrig.
,
28
(
5
), pp.
680
688
.
35.
Grace
,
I. N.
,
Datta
,
D.
, and
Tassou
,
S. A.
,
2005
, “
Sensitivity of Refrigeration System Performance to Charge Levels and Parameters for On-Line Leak Detection
,”
Appl. Therm. Eng.
,
25
(
4
), pp.
557
566
.
You do not currently have access to this content.