The transient thermal response of a 15-cell, 48 V, lithium-ion battery pack for an unmanned ground vehicle (UGV) was simulated using ANSYS fluent. Heat generation rates and specific heat capacity of a single cell were experimentally measured and used as input to the thermal model. A heat generation load was applied to each battery, and natural convection film boundary conditions were applied to the exterior of the enclosure. The buoyancy-driven natural convection inside the enclosure was modeled along with the radiation heat transfer between internal components. The maximum temperature of the batteries reached 65.6 °C after 630 s of usage at a simulated peak power draw of 3600 W or roughly 85 A. This exceeds the manufacturer's maximum recommended operating temperature of 60 °C. We present a redesign of the pack that incorporates a passive thermal management system consisting of a composite expanded graphite (EG) matrix infiltrated with a phase-changing paraffin wax. The redesigned battery pack was similarly modeled, showing a decrease in the maximum temperature to 50.3 °C after 630 s at the same power draw. The proposed passive thermal management system kept the batteries within their recommended operating temperature range.

References

References
1.
Maleki
,
H.
, and
Shamsuri
,
A. K.
,
2003
, “
Thermal Analysis and Modeling of a Notebook Computer Battery
,”
J. Power Sources
,
115
(
1
), pp.
131
136
.
2.
Kim
,
G.
,
Pesaran
,
A.
, and
Spotnitz
,
R.
,
2007
, “
A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells
,”
J. Power Sources
,
170
(
2
), pp.
476
489
.
3.
Onda
,
K.
,
Ohshima
,
T.
,
Nakayama
,
M.
,
Fukuda
,
K.
, and
Araki
,
T.
,
2005
, “
Thermal Behavior of Small Lithium-Ion Battery During Rapid Charge and Discharge Cycles
,”
J. Power Sources
,
158
(
1
), pp.
535
542
.
4.
Pesaran
,
A.
,
Vlahinos
,
A.
, and
Burch
,
S.
,
1977
, “
Thermal Performance of EV and HEV Battery Modules and Packs
,” National Renewable Energy Laboratory,
Report No. NREL/CP-540-23527
.
5.
Al Hallaj
,
S.
,
Venkatachalapathy
,
R.
,
Prakash
,
J.
, and
Selman
,
J. R.
,
2000
, “
Entropy Changes Due to Structural Transformation in the Graphite Anode and Phase Change of the LiCoO2 Cathode
,”
J. Electrochem. Soc.
,
147
(
7
), pp.
2432
2436
.
6.
Viswanathan
,
V. V.
,
Choi
,
D.
,
Wang
,
D.
,
Xu
,
W.
,
Towne
,
S.
,
Williford
,
R. E.
,
Zhang
,
J.
,
Liu
,
J.
, and
Yang
,
Z.
,
2010
, “
Effect of Entropy Change of Lithium Intercalation in Cathodes and Anodes on Li-Ion Battery Thermal Management
,”
J. Power Sources
,
195
(
1
), pp.
3720
3729
.
7.
Mills
,
A.
, and
Al-Hallaj
,
S.
,
2005
, “
Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs
,”
J. Power Sources
,
141
(
2
), pp.
307
315
.
8.
ANSYS
,
2009
, “
FLUENT 12.0 User's Guide
,” ANSYS, Inc., Canonsburg, PA.
9.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
,
5th ed.
,
Wiley
,
Hoboken, NJ
.
10.
Doughty
,
D. H.
,
Butler
,
P. C.
,
Jungst
,
R. G.
, and
Roth
,
E. P.
,
2002
, “
Lithium Battery Thermal Models
,”
J. Power Sources
,
110
(
2
), pp.
357
363
.
11.
Al-Hallaj
,
S.
, and
Selman
,
J. R.
,
2002
, “
Thermal Modeling of Secondary Lithium Batteries for Electric Vehicle/Hybrid Electric Vehicle Applications
,”
J. Power Sources
,
110
(
2
), pp.
341
348
.
12.
Rao
,
Z.
,
Wang
,
S.
, and
Zhang
,
G.
,
2011
, “
Simulation and Experiment of Thermal Energy Management With Phase Change Material for Ageing LiFePO4 Power Battery
,”
Energy Convers. Manage.
,
52
(
12
), pp.
3408
3414
.
13.
Farid
,
M. M.
,
Kuhdair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1597
1615
.
14.
Py
,
X.
,
Olives
,
R.
, and
Mauran
,
S.
,
2001
, “
Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2727
2737
.
15.
Han
,
J. H.
,
Cho
,
K. W.
,
Lee
,
K. H.
, and
Kim
,
H.
,
1998
, “
Porous Graphite Matrix for Chemical Heat Pumps
,”
Carbon
,
36
(
12
), pp.
1801
1810
.
16.
Mills
,
A.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2006
, “
Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix
,”
J. Appl. Therm. Eng.
,
26
(
14–15
), pp.
1652
1661
.
17.
Bonnissel
,
M.
,
Lou
,
L.
, and
Tondeur
,
D.
,
2001
, “
Compacted Exfoliated Natural Graphite as a Heat Conduction Medium
,”
Carbon
,
39
(
14
), pp.
2151
2161
.
18.
Farid
,
M.
,
Hamad
,
F.
, and
Abu-Arabi
,
M.
,
1998
, “
Melting and Solidification in Multi-Dimensional Geometry and Presence of More Than One Interface
,”
Energy Convers. Manage.
,
39
(
8
), pp.
809
818
.
19.
Pesaran
,
A. A.
,
2001
, “
Battery Thermal Management in EVs and HEVs: Issues and Solutions
,”
National Renewable Energy Laboratory
, Golden, CO.
You do not currently have access to this content.