In this research, a very popular alternative computational technique, the lattice Boltzmann method (LBM), has been used to simulate the indoor airflow and heat transfer in a model hospital ward. Different Reynolds numbers have been used to study the airflow pattern. Boundary conditions for velocity and temperature have also been discussed in detail. Several tests have been conducted for code validation. LBM is demonstrated through simulation in forced convection inside hospital ward with six beds for two different situations: ward without partition and ward with partition. Changes in average rate of heat transfer in terms of average Nusselt numbers have also been recorded for those situations. Average Nusselt numbers were found to differ for different cases. In terms of airflow, it has been found that, for various Reynolds numbers, airflow changes its pattern and leads to few recirculations for relatively higher Reynolds number but remains steady for low Reynolds number. It was observed that partition narrowed the channel for airflow and once the air overcame this barrier, it gets free space and recirculation appears more. For higher Reynolds number, the average rate of heat transfer increases and patients near the recirculation zone release maximum heat and will feel more comfortable.

References

References
1.
Hasslacher
,
B.
,
Pomeau
,
Y.
, and
Frisch
,
U.
,
1986
, “
Lattice-Gas Automata for the Navier–Stokes Equation
,”
Phys. Rev. Lett.
,
56
(
14
), p.
1505
.
2.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
,
2003
, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
,
68
(
2
), p.
026701
.
3.
Szucki
,
M.
, and
Suchy
,
J. S.
,
2012
, “
A Method for Taking Into Account Local Viscosity Changes in Single Relaxation Time the Lattice Boltzmann Model
,”
Metall. Foundry Eng.
,
38
(
1
), pp.
33
42
.
4.
Lee
,
T. S.
,
Huang
,
H.
, and
Shu
,
C.
,
2005
, “
An Axisymmetric Incompressible Lattice BGK Model for Simulation of the Pulsatile Flow in a Circular Pipe
,”
Int. J. Numer. Meth. Fluids
,
49
(
1
), pp.
99
116
.
5.
Sidik
,
N. A. C.
,
2008
, “
The Development of Thermal Lattice Boltzmann Models in Incompressible Limit
,”
Malays. J. Fundam. Appl. Sci.
,
3
(
2
), pp. 193–202.
6.
Jeong
,
H. K.
,
Yoon
,
H. S.
,
Ha
,
M. Y.
, and
Tsutahara
,
M.
,
2010
, “
An Immersed Boundary-Thermal Lattice Boltzmann Method Using an Equilibrium Internal Energy Density Approach for the Simulation of Flows With Heat Transfer
,”
J. Comp. Phys.
,
229
(
7
), pp.
2526
2543
.
7.
Mondal
,
B.
, and
Li
,
X.
,
2010
, “
Effect of Volumetric Radiation on Natural Convection in a Square Cavity Using Lattice Boltzmann Method With Non-Uniform Lattices
,”
Int. J. Heat Mass Transfer
,
53
(
21
), pp.
4935
4948
.
8.
Ma
,
Y.
,
Bhattacharya
,
A.
,
Kuksenok
,
O.
,
Perchak
,
D.
, and
Balazs
,
A. C.
,
2012
, “
Modeling the Transport of Nanoparticle-Filled Binary Fluids Through Micropores
,”
Langmuir
,
28
(
31
), pp.
11410
11421
.
9.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Ann. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
10.
Breyiannis
,
G.
, and
Valougeorgis
,
D.
,
2004
, “
Lattice Kinetic Simulations in Three-Dimensional Magnetohydrodynamics
,”
Phys. Rev. E
,
69
(
6
), p.
065702
.
11.
Halliday
,
I.
,
Hammond
,
L. A.
,
Care
,
C. M.
,
Good
,
K.
, and
Stevens
,
A.
,
2001
, “
Lattice Boltzmann Equation Hydrodynamics
,”
Phys. Rev. E
,
64
(
1
), p.
011208
.
12.
Azwadi
,
C. S. N.
, and
Tanahashi
,
T.
,
2008
, “
Development of 2-D and 3-D Double-Population Thermal Lattice Boltzmann Models
,”
Matematika
,
24
, pp.
53
66
.
13.
Crouse
,
B.
,
Krafczyk
,
M.
,
Kühner
,
S.
,
Rank
,
E.
, and
Van Treeck
,
C.
,
2002
, “
Indoor Air Flow Analysis Based on Lattice Boltzmann Methods
,”
Energy Build.
,
34
(
9
), pp.
941
949
.
14.
Zhang
,
S. J.
, and
Lin
,
C. X.
,
2010
, “
Application of Lattice Boltzmann Method in Indoor Airflow Simulation
,”
HVAC R Res.
,
16
(
6
), pp.
825
841
.
15.
Liu
,
J.
,
Wang
,
H.
, and
Wen
,
W.
,
2009
, “
Numerical Simulation on a Horizontal Airflow for Airborne Particles Control in Hospital Operating Room
,”
Build. Environ.
,
44
(
11
), pp.
2284
2289
.
16.
Chen
,
Q.
,
Lee
,
K.
,
Mazumdar
,
S.
,
Poussou
,
S.
,
Wang
,
L.
,
Wang
,
M.
, and
Zhang
,
Z.
,
2010
, “
Ventilation Performance Prediction for Buildings: Model Assessment
,”
Build. Environ.
,
45
(
2
), pp.
295
303
.
17.
Chen
,
Q.
,
2009
, “
Ventilation Performance Prediction for Buildings: A Method Overview and Recent Applications
,”
Build. Environ.
,
44
(
4
), pp.
848
858
.
18.
Wang
,
L. L.
, and
Chen
,
Q.
,
2008
, “
Evaluation of Some Assumptions Used in Multizone Airflow Network Models
,”
Build. Environ.
,
43
(
10
), pp.
1671
1677
.
19.
Zhang
,
Z.
,
Chen
,
X.
,
Mazumdar
,
S.
,
Zhang
,
T.
, and
Chen
,
Q.
,
2009
, “
Experimental and Numerical Investigation of Airflow and Contaminant Transport in an Airliner Cabin Mockup
,”
Build. Environ.
,
44
(
1
), pp.
85
94
.
20.
Guo
,
Z.
,
Shi
,
B.
, and
Zheng
,
C.
,
2002
, “
A Coupled Lattice BGK Model for the Boussinesq Equations
,”
Int. J. Numer. Methods Fluids
,
39
(
4
), pp.
325
342
.
21.
Chen
,
S.
,
Chen
,
H.
,
Martnez
,
D.
, and
Matthaeus
,
W.
,
1991
, “
Lattice Boltzmann Model for Simulation of Magnetohydrodynamics
,”
Phys. Rev. Lett.
,
67
(
27
), p.
3776
.
22.
Qian
,
Y.
,
dHumieres
,
D.
, and
Lallemand
,
P.
,
1992
, “
Recovery of Navier–Stokes Equations Using a Lattice-Gas Boltzmann Method
,”
Europhys. Lett
,
17
(
6
), p.
479
.
23.
Chen
,
H.
,
Chen
,
S.
, and
Matthaeus
,
W. H.
,
1992
, “
Recovery of the Navier–Stokes Equations Using a Lattice-Gas Boltzmann Method
,”
Phys. Rev. A
,
45
(
8
), p.
R5339
.
24.
Himika
,
T. A.
,
Hasan
,
M. F.
, and
Molla
,
M. M.
,
2016
, “
Lattice Boltzmann Simulation of Airflow and Mixed Convection in a General Ward of Hospital
,”
J. Comput. Eng.
,
2016
, p.
5405939
.
25.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
(
6
), pp.
1591
1598
.
26.
Ghia
,
U. K. N. G.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Resolutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comp. Phys.
,
48
(
3
), pp.
387
411
.
27.
Erturk
,
E.
,
2008
, “
Numerical Solutions of 2-D Steady Incompressible Flow Over a Backward-Facing Step—Part I: High Reynolds Number Solutions
,”
Comput. Fluids
,
37
(
6
), pp.
633
655
.
28.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schönung
,
B.
,
1983
, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
,
127
, pp.
473
496
.
You do not currently have access to this content.