The purpose of this study was to optimize the performance of a double-exposure solar cooker based on exergy efficiency. Two similar solar cookers with variable parabolic mirror position were used for this experimental research. The system's exergy depends on many variables, which were kept fixed with the exception of the mirror position and operation time. The mathematical model of exergy efficiency was obtained based on the experimental variables, which could be used to optimize the mirror positions at any time. As a result, a new system with a variable mirror on a parabolic curve was developed, which can yield up to 30% increased mean exergy efficiency. Validation of the results was carried out by both the variance analysis test and comparing with the experimental data. The experiments were carried out in Mashhad, Iran, at 37 latitude, 54 longitude, and a height of 985 m above sea level.

References

References
1.
Panwar
,
N. L.
,
Kaushikb
,
S. C.
, and
Kotharia
,
S.
,
2011
, “
Role of Renewable Energy Sources in Environmental Protection: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1513
1524
.
2.
Al-Soud
,
M.
,
Abdallah
,
E.
,
Akayleh
,
A.
,
Abdallah
,
S.
, and
Hrayshat
,
E.
,
2010
, “
A Parabolic Solar Cooker With Automatic Two Axes Sun Tracking System
,”
Appl. Energy
,
87
(
2
), pp.
463
470
.
3.
Kumar
,
N.
,
Chavda
,
T.
, and
Mistry
,
H. N.
,
2010
, “
A Truncated Pyramid Non-Tracking Type Multipurpose Domestic Solar Cooker/Hot Water System
,”
Appl. Energy
,
87
(
2
), pp.
471
477
.
4.
Sharaf
,
E.
,
2002
, “
A New Design for an Economical, Highly Efficient, Conical Solar Cooker
,”
Renewable Energy
,
27
(
4
), pp.
599
619
.
5.
Muthusivagami
,
R. M.
,
Velraj
,
R.
, and
Sethumadhavan
,
R.
,
2010
, “
Solar Cookers With and Without Thermal Storage—A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
691
701
.
6.
Harmim
,
A.
,
Boukar
,
M.
, and
Amar
,
M.
,
2008
, “
Experimental Study of a Double Exposure Solar Cooker With Finned Cooking Vessel
,”
Sol. Energy
,
82
(
4
), pp.
287
289
.
7.
Harmim
,
A.
,
Belhamel
,
M.
,
Boukar
,
M.
, and
Amar
,
M.
,
2010
, “
Experimental Investigation of a Box-Type Solar Cooker With a Finned Absorber Plate
,”
Energy
,
35
(
9
), pp.
3799
3802
.
8.
Ozturk
,
H. H.
,
2004
, “
Experimental Determination of Energy and Exergy Efficiency of the Solar Parabolic-Cooker
,”
Sol. Energy
,
77
(
1
), pp.
67
71
.
9.
Ozturk
,
H. H.
,
2004
, “
Energy and Exergy Efficiency of Solar Box Cooker
,”
Int. J. Exergy
,
1
(
2
), pp.
202
214
.
10.
Petela
,
R.
,
2005
, “
Exergy Analysis of the Solar Cylindrical-Parabolic Cooker
,”
Sol. Energy
,
79
(
3
), pp.
221
233
.
11.
Ozturk
,
H. H.
,
2007
, “
Comparison of Energy and Exergy Efficiency for Solar Box and Parabolic Cookers
,”
J. Energy Eng.
,
133
(
1
), pp.
53
62
.
12.
Rathore
,
N.
, and
Shukla
,
S. K.
,
2009
, “
Experimental Investigations and Comparison of Energy and Exergy Efficiencies of the Box Type and Solar Parabolic Cooker
,”
Int. J. Energy Technol. Policy
,
7
(
2
), pp. 201–212.
13.
Kumar
,
N.
,
Vishwanath
,
G.
, and
Gupta
,
A.
,
2012
, “
Effect of Load Variations on Exergy Performance of Solar Box Type Cooker
,”
J. Renewable Sustainable Energy
,
4
(
5
), p.
053125
.
14.
Park
,
S. R.
,
Pandey
,
A. K.
,
Tyagi
,
V. V.
, and
Tyagi
,
S. K.
,
2014
, “
Energy and Exergy Analysis of Typical Renewable Energy Systems
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
105
123
.
15.
Nemati
,
H.
, and
Javanmardi
,
M. J.
,
2012
, “
Exergy Optimization of Domestic Solar Cylindrical-Parabolic Cooker
,”
J. Renewable Sustainable Energy
,
4
(
6
), p.
063134
.
16.
Zamani
,
H.
,
Moghiman
,
M.
, and
Kianifar
,
A.
,
2015
, “
Optimization of the Parabolic Mirror Position in a Solar Cooker Using the Response Surface Method (RSM)
,”
Renewable Energy
,
81
, pp.
753
759
.
17.
Hajmohammadi
,
M. R.
,
Eskandari
,
H.
,
Saffar-Avval
,
M.
, and
Campo
,
A.
,
2013
, “
A New Configuration of Bend Tubes for Compound Optimization of Heat and Fluid Flow
,”
Energy
,
62
, p.
418e424
.
18.
Lorenzini
,
G.
,
Barreto
,
E. X.
,
Beckel
,
C. C.
,
Schneider
,
P. S.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2016
, “
Constructal Design of I-Shaped High Conductive Pathway for Cooling a Heat-Generating Medium Considering the Thermal Contact Resistance
,”
Int. J. Heat Mass Transfer
,
93
, pp.
770
777
.
19.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
, and
Nourazar
,
S.
,
2012
, “
Constructal Design of Multiple Heat Sources in a Square-Shaped Fin
,”
Proc. Inst. Mech. Eng., Part E
,
226
(
4
), pp.
324
336
.
20.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2009
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
3rd ed.
,
Wiley
, New York.
21.
Roux
,
W. J.
,
Stander
,
N.
, and
Haftka
,
R. T.
,
1998
, “
Response Surface Approximations for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
42
(
3
), pp.
517
534
.
22.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2014
,
Solar Engineering of Thermal Processes
,
3rd ed.
,
Wiley
,
New York, NY
.
23.
Panwar
,
N. L.
,
Kothari
,
S.
, and
Kaushik
,
S. C.
,
2013
, “
Energetic and Exergetic Analysis of Three Different Solar Cookers
,”
J. Renewable Sustainable Energy
,
5
(
2
), p.
023102
.
24.
Funk
,
P. A.
,
2000
, “
Evaluating the International Standard Procedure for Testing Solar Cookers and Reporting Performance
,”
Sol. Energy
,
68
(
1
), pp.
1
7
.
25.
Bezerraa
,
M. A.
,
Santelli
,
R. E.
,
Oliveira
,
E. P.
,
Villar
,
L. S.
, and
Escaleira
,
L. A.
,
2008
, “
Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry
,”
Talanta
,
76
(
5
), pp.
965
977
.
26.
Abdul Halim
,
S. F.
,
Kamaruddin
,
A. H.
, and
Fernando
,
W. J. N.
,
2009
, “
Continuous Biosynthesis of Biodiesel From Waste Cooking Palm Oil in a Packed Bed Reactor: Optimization Using Response Surface Methodology (RSM) and Mass Transfer Studies
,”
Bioresour. Technol.
,
100
(
2
), pp.
710
716
.
You do not currently have access to this content.