The quenching performance of a copper nanofluid (copper nanoparticles in de-ionized water), prepared using laser ablation, is compared to de-ionized water in both the still and agitated state. The nanoparticles significantly enhanced heat extraction in the still condition, increasing the average cooling rate within the critical temperature range for low alloy steel phase transformations (850–300 °C) from 152 °C/s to 180 °C/s, approximately the same rate as highly agitated de-ionized water. The nanofluid under low levels of agitation saw a decrease in quenching performance relative to the still condition, while higher levels of agitation showed similar levels of heat extraction to that of agitated de-ionized water. The losses of Brownian motion and microlayering mechanisms are suggested as potential causes for the reduction in the performance of agitated nanofluids.

References

References
1.
Grum
,
J.
,
Božič
,
S.
, and
Zupančič
,
M.
,
2001
, “
Influence of Quenching Process Parameters on Residual Stresses in Steel
,”
J. Mater. Process. Technol.
,
114
(
1
), pp.
57
70
.
2.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), p.
3374
.
3.
Prabhu
,
K. N.
, and
Fernades
,
P.
,
2008
, “
Nanoquenchants for Industrial Heat Treatment
,”
J. Mater. Eng. Perform.
,
17
(
1
), pp.
101
103
.
4.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
365
401
.
5.
Dhir
,
V. K.
,
1991
, “
Nucleate and Transition Boiling Heat Transfer Under Pool and External Flow Conditions
,”
Int. J. Heat Fluid Flow
,
12
(
4
), pp.
290
314
.
6.
Sedighi
,
M.
, and
McMahon
,
C. A.
,
2000
, “
The Influence of Quenchant Agitation on the Heat Transfer Coefficient and Residual Stress Development in the Quenching of Steels
,”
Proc. Inst. Mech. Eng. Part B
,
214
(
7
), pp.
555
567
.
7.
Fernandes
,
P.
, and
Prabhu
,
K. N.
,
2007
, “
Effect of Section Size and Agitation on Heat Transfer During Quenching of AISI 1040 Steel
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
1
5
.
8.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.
9.
Eastman
,
J. A.
,
Choi
,
S. U.-S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.
10.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
11.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, eds., Fed-Vol/MD-vol. 66 ASME, New York, pp. 99–105.
12.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
13.
Bolukbasi
,
A.
, and
Ciloglu
,
D.
,
2011
, “
Pool Boiling Heat Transfer Characteristics of Vertical Cylinder Quenched by SiO2–Water Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1013
1021
.
14.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2009
, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
,
35
(
5
), pp.
427
438
.
15.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Haldar
,
K.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2015
, “
Surfactant-Based Cu–Water Nanofluid Spray for Heat Transfer Enhancement of High Temperature Steel Surface
,”
ASME J. Heat Transfer
,
137
(
5
), p.
051504
.
16.
Babu
,
K.
, and
Kumar
,
T. S. P.
,
2011
, “
Effect of CNT Concentration and Agitation on Surface Heat Flux During Quenching in CNT Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
106
117
.
17.
Kazakevich
,
P. V.
,
Simakin
,
A. V.
,
Voronov
,
V. V.
, and
Shafeev
,
G. A.
,
2006
, “
Laser Induced Synthesis of Nanoparticles in Liquids
,”
Appl. Surf. Sci.
,
252
(
13
), pp.
4373
4380
.
18.
Tilaki
,
R. M.
,
Iraji Zad
,
A.
, and
Mahdavi
,
S. M.
,
2007
, “
Size, Composition and Optical Properties of Copper Nanoparticles Prepared by Laser Ablation in Liquids
,”
Appl. Phys. A
,
88
(
2
), pp.
415
419
.
19.
Aye
,
H. L.
,
Choopun
,
S.
, and
Chairuangsri
,
T.
,
2010
, “
Preparation of Nanoparticles by Laser Ablation on Copper Target in Distilled Water
,”
Adv. Mater. Res.
,
93–94
, pp.
83
86
.
20.
Santillán
,
J. M. J.
,
Videla
,
F. A.
,
van Raap
,
M. B.
,
Schinca
,
D. C.
, and
Scaffardi
,
L. B.
,
2013
, “
Analysis of the Structure, Configuration, and Sizing of Cu and Cu Oxide Nanoparticles Generated by FS Laser Ablation of Solid Target in Liquids
,”
J. Appl. Phys.
,
113
, p.
134305
.
21.
White
,
S. B.
,
Shih
,
A. J.
, and
Pipe
,
K. P.
,
2010
, “
Effects of Nanoparticle Layering on Nanofluid and Base Fluid Pool Boiling Heat Transfer From a Horizontal Surface Under Atmospheric Pressure
,”
J. Appl. Phys.
,
107
, p.
114302
.
22.
Jeon
,
S.
,
Roy
,
P.
,
Anand
,
N. K.
, and
Banerjee
,
D.
,
2010
, “
Investigation of Flow Boiling on Nanostructured Surfaces
,”
ASME
Paper No. IHTC14-22926.
You do not currently have access to this content.