A gas bubble under the influence of an ultrasonic field so strong to destroy any material due to high pressures and temperatures reached during the collapse is the topic of the present paper. In the current work, simulations have been performed to describe the radial dynamics of a gas (argon) bubble being strongly forced to periodic oscillation in a highly viscous liquid like aqueous sulfuric acid solution. The basic equations for nonlinear bubble oscillation in a sound field are given, together with a survey of some important existing studies. The hydrodynamics forces acting on the bubble are taken into account to consider the bubble dynamics under the action of a sound wave. The theory permits one to predict correctly the bubble radius–time behavior and the characteristics of a microsize bubble in sulfuric acid solutions, such as the peak temperature and pressure fields generated at this occasion.

References

1.
Suslick
,
K. S.
,
2001
, “
Sonoluminescence and Sonochemistry
,”
Encyclopedia of Physical Science and Technology
, 3rd ed.,
Academic Press
,
San Diego, CA
.
2.
Brujan
,
E. A.
, and
Matsumoto
,
Y.
,
2012
, “
Collapse of Micrometer-Sized Cavitation Bubbles Near a Rigid Boundary
,”
Microfluid. Nanofluid.
,
13
(
6
), pp.
957
966
.
3.
Avila
,
S.
,
Klaseboer
,
E.
,
Khoo
,
B.
, and
Ohl
,
C.
,
2011
, “
Cavitation Bubble Dynamics in a Liquid Gap of Variable Height
,”
J. Fluid Mech.
,
682
, pp.
241
260
.
4.
Lauterborn
,
W.
,
1976
, “
Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids
,”
J. Acoust. Soc. Am.
,
59
(
2
), pp.
283
293
.
5.
Crum
,
L. A.
,
1983
, “
The Polytropic Exponent of Gas Contained Within Air Bubbles Pulsating in a Liquid
,”
J. Acoust. Soc. Am.
,
73
(
1
), pp.
116
120
.
6.
Francescutto
,
A.
, and
Nabergoj
,
R.
,
1983
, “
Steady State Oscillations of Gas Bubbles in Liquids: Explicit Formulas for Frequency Response Curves
,”
J. Acoust. Soc. Am.
,
73
(
2
), pp.
457
460
.
7.
Prosperetti
,
A.
,
1984
, “
Bubble Phenomena in Sound Fields: Part One
,”
Ultrasonics
,
22
(
2
), pp.
69
77
.
8.
Parlitz
,
U.
,
Englisch
,
V.
,
Scheffczyk
,
C.
, and
Lauterborn
,
W.
,
1990
, “
Bifurcation Structure of Bubble Oscillators
,”
J. Acoust. Soc. Am.
,
88
(
2
), pp.
1061
1077
.
9.
Crum
,
L.
, and
Prosperetti
,
A.
,
1983
, “
Nonlinear Oscillations of Gas Bubbles in Liquids: An Interpretation of Some Experimental Results
,”
J. Acoust. Soc. Am.
,
73
(
1
), pp.
121
127
.
10.
Crum
,
L.
, and
Prosperetti
,
A.
,
1984
, “
Erratum and Comments on ‘Nonlinear Oscillations of Gas Bubbles in Liquids: An Interpretation of Some Experimental Results' [J. Acoust. Soc. Am. 73, 121-127 (1983)]
,”
J. Acoust. Soc. Am.
,
75
(
6
), pp.
1910
1912
.
11.
Prosperetti
,
A.
,
Crum
,
L. A.
, and
Commander
,
K. W.
,
1988
, “
Nonlinear Bubble Dynamics
,”
J. Acoust. Soc. Am.
,
83
(
2
), pp.
502
514
.
12.
Sochard
,
S.
,
Wilhelm
,
A. M.
, and
Delmas
,
H.
,
1998
, “
Gas-Vapor Bubble Dynamics and Homogeneous Sonochemistry
,”
Chem. Eng. Sci.
,
53
(
2
), pp.
239
254
.
13.
Prosperetti
,
A.
, and
Hao
,
Y.
,
1999
, “
Modelling of Spherical Gas Bubble Oscillations and Sonoluminescence
,”
Philos. Trans. R. Soc.
, A,
357
(
1751
), pp.
203
223
.
14.
Yasui
,
K.
,
1998
, “
A New Formulation of Bubble Dynamics for Sonoluminescence
,”
Electron. Commun. Jpn., Part II
,
81
(
2
), pp.
39
45
.
15.
Kawashima
,
H.
,
Mie
,
I.
, and
Masaharu
,
K.
,
2001
, “
Oscillation of a Vapor/Gas Bubble With Heat and Mass Transport
,”
Trans. Jpn. Soc. Mech. Eng.
,
67
(
661
), pp.
2234
2242
.
16.
Kawashima
,
H.
, and
Kameda
,
M.
,
2008
, “
Dynamic of a Spherical Vapour/Gas Bubble in Varying Pressure Fields
,”
J. Fluid Sci. Technol.
,
3
(
8
), pp.
943
954
.
17.
Hao
,
Y.
, and
Prospertti
,
A.
,
1999
, “
The Dynamics of Vapor Bubbles in Acoustic Pressure Fields
,”
Phys. Fluids
,
11
(
8
), pp.
2008
2019
.
18.
Alhelfi
,
A.
, and
Sunden
,
B.
,
2013
, “
Bubble Power and Ultrasound
,”
Int. J. Enhanced Res. Sci. Technol. Eng.
,
2
(
11
), pp.
130
134
.
19.
Brenner
,
M.
, and
Lohse
,
S.
,
2002
, “
Single-Bubble Sonoluminescence
,”
Rev. Mod. Phys.
,
74
(
2
), pp.
425
484
.
20.
Campbell
,
R. K.
,
2010
, “
Single Bubble Sonoluminescence
,” Master's thesis, Graduate College of the University of Illinois at Urbana-Champaign, Champaign, IL.
21.
Vignoli
,
L.
,
Barros
,
A.
,
Thome
,
R.
,
Nogueira
,
A.
,
Paschoal
,
R.
, and
Rodrigues
,
H.
,
2013
, “
Modeling the Dynamics of Single-Bubble Sonoluminescence
,”
Eur. J. Phys.
,
34
(
3
), pp.
679
688
.
22.
Holzfuss
,
J.
,
2008
, “
Surface-Wave Instabilities, Period Doubling, and an Approximate Universal Boundary of Bubble Stability at the Upper Threshold of Sonoluminescence
,”
Phys. Rev. E
,
77
(
6
), p.
066309
.
23.
Alhelfi
,
A.
,
Sunden
,
B.
, and
Yuan
,
J.
,
2013
, “
Modeling of Spherical Gas Bubble Oscillation in Acoustic Pressure Field
,”
8th International Conference on Multiphase Flow
, ICMF, Jeju, Korea, May 26–31, Paper No. 224.
24.
Flannigan
,
D.
,
Hopkins
,
S.
,
Camara
,
C.
,
Putterman
,
S.
, and
Suslick
,
K.
,
2006
, “
Measurement of Pressure and Density Inside a Single Sonoluminescing Bubble
,”
Phys. Rev. Lett.
,
96
(
20
), p.
204301
.
25.
Flannigan
,
D.
, and
Suslick
,
K.
,
2005
, “
Plasma Formation and Temperature Measurement During Single-Bubble Cavitation
,”
Lett. Nat.
,
434
(
7029
), pp.
52
55
.
26.
Brennen
,
C.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford, UK
.
27.
Alhelfi
,
A.
,
2016
, “
Development and Assessment of Methods for the Prediction of Hydrodynamic and Ultrasound Induced Cavitation
,” Ph.D. thesis, Department of Energy Sciences, Lund University, Sweden.
28.
Sochard
,
S.
,
Wilhelm
,
A. M.
, and
Delmas
,
H.
,
1997
, “
Modelling of Free Radicals Production in a Collapsing Gas-Vapour Bubble
,”
Ultrason. Sonochem.
,
4
(
2
), pp.
77
84
.
29.
Alhelfi
,
A.
,
2013
, “
On Bubble Dynamics in Acoustic Cavitation
,” Thesis for the Degree of Licentiate of Engineering, Department of Energy Sciences, Lund University, Sweden.
30.
Mohmood
,
S.
,
Yoo
,
Y.
, and
Kwak
,
H.
,
2014
, “
Hydrodynamic Approach to Multibubble Sonoluminescence
,”
Ultrason. Sonochem.
,
21
(
4
), pp.
1512
1518
.
31.
Kwak
,
H.
, and
Na
,
J.
,
1997
, “
Physical Processes for Single Bubble Sonoluminescence
,”
J. Phys. Soc. Jpn.
,
66
(
10
), pp.
3074
3083
.
32.
Lim
,
C.
,
Kim
,
J. E.
,
Lee
,
J. Y.
, and
Kwak
,
H.
,
2009
, “
Nonlinear Behavior of Micro Bubbles Under Ultrasound due to Heat Transfer
,”
J. Mech. Sci. Technol.
,
23
(
9
), pp.
2521
2528
.
33.
Kestin
,
J.
,
Knierim
,
K.
,
Masson
,
E. A.
,
Najafi
,
B.
,
Ro
,
S. T.
, and
Waldman
,
M.
,
1984
, “
Equilibrium and Transport Properties of the Noble Gases and Their Mixtures at Low Density
,”
J. Phys. Chem. Ref. Data
,
13
(
1
), pp.
229
303
.
34.
Wang
,
J.
,
Xuefeng
,
X.
, and
Yaping
,
H.
,
2005
, “
Determination of Fire Scenario in Performance-Based Safety Design
,”
Fire Sci. Technol.
,
24
, pp.
274
278
.
35.
Flannigan
,
D.
,
Hopkins
,
S.
, and
Suslick
,
K.
,
2005
, “
Sonochemistry and Sonoluminescence in Ionic Liquids, Molten Salts, and Concentrated Electrolyte Solutions
,”
J. Organomet. Chem.
,
690
(
15
), pp.
3513
3517
.
36.
Suslick
,
K.
, and
Flannigan
,
D.
,
2008
, “
Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation
,”
Ann. Rev. Phys. Chem.
,
59
(
1
), pp.
659
683
.
You do not currently have access to this content.