An effective design option for a cooling system is to use a two-phase pumped cooling loop to simultaneously satisfy the temperature uniformity and high heat flux requirements. A reciprocating-mechanism driven heat loop (RMDHL) is a novel heat transfer device that could attain a high heat transfer rate through a reciprocating flow of the two-phase working fluid inside the heat transfer device. Although the device has been tested and validated experimentally, analytical or numerical study has not been undertaken to understand its working mechanism and provide guidance for the device design. The objective of this paper is to develop a numerical model for the RMDHL to predict its operational performance under different working conditions. The developed numerical model has been successfully validated by the existing experimental data and will provide a powerful tool for the design and performance optimization of future RMDHLs. The study also reveals that the maximum velocity in the flow occurs near the wall rather than at the center of the pipe, as in the case of unidirectional steady flow. This higher velocity near the wall may help to explain the enhanced heat transfer of an RMDHL.

References

References
1.
Liu
,
Z.
,
Tan
,
S.
,
Wang
,
H.
,
Hua
,
Y.
, and
Gupta
,
A.
,
2014
, “
Compact Thermal Modeling for Packaged Microprocessor Design With Practical Power Maps
,”
Integr. VLSI J.
,
47
(
1
), pp.
71
85
.
2.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
.
3.
Vetrovec
,
J.
,
2014
, “
Thermal Mgmt. Device for High-Heat Flux Electronics
,”
U.S. Patent No. 13/986,084
.
4.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2001
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
1
), pp.
16
23
.
5.
Jeakins
,
W. D.
, and
Moizer
,
W. J. M.
,
2003
, “
Cooling of Electronic Equipment
,”
U.S. Patent No. 6,538,881
.
6.
Krishnamoorthy
,
S.
,
2008
, “
Modeling and Analysis of Temperature Distribution in Nanoscale Circuits and Packages
,” Ph.D. thesis, University of Illinois at Chicago, Chicago, IL.
7.
Cao
,
Y.
,
Xu
,
D.
, and
Gao
,
M.
,
2013
, “
Experimental Study of a Bellows-Type Reciprocating-Mechanism Driven Heat Loop
,”
Int. J. Energy Res.
,
37
(
6
), pp.
665
672
.
8.
Cao
,
Y.
, and
Mingcong
,
G.
,
2008
, “
Experimental and Analytical Studies of Reciprocating-Mechanism Driven Heat Loops (RMDHLs)
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072901
.
9.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2009
,
Fundamentals of Fluid Mechanics
,
6th ed.
,
Wiley
,
Danvers, MA
.
10.
Cao
,
Y.
, and
Gao
,
M.
,
2003
, “
Reciprocating-Mechanism Driven Heat Loops and Their Applications
,”
ASME
Paper No. HT2003-47195.
11.
Ibrahim
,
M. B.
,
Zhang
,
Z.
, and
Wei
,
R.
,
2004
, “
A 2-D CFD Model of Oscillatory Flow With Jets Impinging on a Random Wire Regenerator Matrix
,”
37th Intersociety Energy Conversion Engineering Conference
, Washington, DC, July 29–31, pp.
511
517
.
12.
Ibrahim
,
M. B.
,
Zhang
,
Z.
, and
Kembhavi
,
S.
,
2004
, “
A 2-D Axisymmetric CFD Model of Oscillatory Flow With Separation
,”
37th Intersociety Energy Conversion Engineering Conference
, Washington, DC, July 29–31, pp.
549
555
.
13.
Walther
,
C.
,
Kühl
,
H. D.
,
Pfeffer
,
T.
, and
Schulz
,
S.
,
1998
, “
Influence of Developing Flow on the Heat Transfer in Laminar Oscillating Pipe Flow
,”
Forsch. Ingenieurwes.
,
64
(
3
), pp.
55
63
.
14.
Walther
,
C.
,
Kühl
,
H.-D.
, and
Schulz
,
S.
,
2000
, “
Numerical Investigations on the Heat Transfer in Turbulent Oscillating Pipe Flow
,”
Heat Mass Transfer
,
36
(
2
), pp.
135
141
.
15.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1998
, “
Heat Transfer in Oscillatory Flows
,”
Annual Review of Heat Transfer
, Vol.
IX
,
C. L.
Tien
, ed.,
Begell House
,
Danbury, CT
, pp.
359
419
.
16.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1996
, “
The Friction Coefficient of a Fully-Developed Laminar Reciprocating Flow in a Circular Pipe
,”
Int. J. Heat Fluid Flow
,
17
(
96
), pp.
167
172
.
17.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1990
, “
Multidimensional Effects in Forced Convection Subcooled Boiling
,”
9th International Heat Transfer Conference
, Jerusalem, Israel, Aug. 19–24, pp.
19
24
.
18.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1991
, “
On the Modeling of Multidimensional Effects in Boiling Channels
,”
27th National Heat Transfer Conference
, Minneapolis, MN, July 28–31, pp.
301
314
.
19.
De-Jongh
,
J.
, and
Rijs
,
R.
, eds.,
2004
, “
Pump Design
,”
Pumps
,
Arrakis
,
Veldhoven, The Netherlands
.
20.
Menon
,
A. S.
,
Weber
,
M. E.
, and
Chang
,
H. K.
,
1984
, “
Model Study of Flow Dynamics in Human Central Airways. Part III: Oscillatory Velocity Profiles
,”
Respir. Physiol.
,
55
(
2
), pp.
255
275
.
21.
Uchida
,
S.
,
1964
, “
The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe
,”
Z. Angew. Math. Phys.
,
19
(
1
), pp.
117
120
.
22.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, eds.,
2008
,
Handbook of Mathematical Functions
,
Dover
,
Mineola, NY
.
23.
Podowski
,
M. Z.
,
Alajbegovic
,
A.
, and
Kurul
,
N.
,
1997
, “
Mechanistic Modeling of CHF in Forced-Convection Subcooled Boiling
,” Knolls Atomic Power Laboratory, Schenectady, NY,
Report No. KAPL-P-000162
.
24.
Del Valle
,
V. H.
, and
Kenning
,
D. B. R.
,
1985
, “
Subcooled Flow Boiling at High Heat Flux
,”
Int. J. Heat Mass Transfer
,
28
(
10
), pp.
1907
1920
.
25.
Kocamustafaogullari
,
G.
, and
Ishii
,
M.
,
1983
, “
Interfacial Area and Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
,
26
(
9
), pp.
1377
1387
.
26.
Cole
,
R.
,
1960
, “
A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux
,”
AIChE J.
,
6
(
4
), pp.
533
538
.
27.
Park
,
J. C.
,
Kim
,
M. H.
, and
Miyata
,
H.
,
1999
, “
Fully Non-Linear Free-Surface Simulations by a 3D Viscous Numerical Wave Tank
,”
Int. J. Numer. Methods Fluids
,
29
(
6
), pp.
685
703
.
28.
Kolev
,
N. I.
,
2007
,
Multiphase Flow Dynamics 1: Fundamentals
,
2nd ed.
,
Springer-Verlag
,
New York
.
29.
Kolev
,
N. I.
,
2011
,
Multiphase Flow Dynamics 2: Mechanical Interactions
, Vol.
3
,
Springer-Verlag
,
Berlin
.
30.
Zeitoun
,
O.
, and
Shoukri
,
M.
,
1996
, “
Bubble Behavior and Mean Diameter in Subcooled Flow Boiling
,”
ASME J. Heat Transfer
118
(
1
), pp.
110
116
.
31.
Drew
,
D. A.
,
1983
, “
Mathematical Modeling of Two-Phase Flow
,”
Ann. Rev. Fluid Mech.
,
15
(
1
), pp.
261
291
.
32.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M.
,
2005
,
Bubbles, Drops, and Particles
,
Academic Press
,
London
.
33.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.
34.
Frank
,
T.
,
Shi
,
J. M.
, and
Burns
,
A. D.
,
2004
, “
Validation of Eulerian Multiphase Flow Models for Nuclear Safety Application
,”
3rd International Symposium on Two-Phase Flow Modelling and Experimentation
, Pisa, Italy, Sept. 22–24.
35.
Tomiyama
,
A.
,
1998
, “
Struggle With Computational Bubble Dynamics
,”
Multiphase Sci. Technol.
,
10
(
4
), pp.
369
405
.
36.
Lopez de Bertodano
,
M. A.
,
1992
, “
Turbulent Bubbly Two-Phase Flow in a Triangular Duct
,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY.
37.
Antal
,
S. P.
,
Lahey
,
R. T.
, and
Flaherty
,
J. E.
,
1991
, “
Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
17
(
5
), pp.
635
652
.
38.
Markatos
,
N. C.
,
1986
, “
The Mathematical Modelling of Turbulent Flows
,”
Appl. Math. Modell.
,
10
(
3
), pp.
190
220
.
39.
Hinze
,
J. O.
, ed.,
1975
,
Turbulence
(McGraw-Hill Series in Mechanical Engineering),
2nd ed.
,
McGraw-Hill
,
New York
.
40.
Troshko
,
A. A.
, and
Hassan
,
Y. A.
,
2001
, “
A Two-Equation Turbulence Model of Turbulent Bubbly Flows
,”
Int. J. Multiphase Flow
,
27
(
11
), pp.
1965
2000
.
41.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Elsevier Academic Press
,
Burlington, MA
.
42.
Mashayek
,
F.
,
2001
, “
Dynamics of Evaporating Drops. Part II: Free Oscillations
,”
Int. J. Heat Mass Transfer
,
44
(
8
), pp.
1527
1541
.
43.
Tentner
,
A.
,
Merzari
,
E.
, and
Vegendla
,
P.
,
2014
, “
Computational Fluid Dynamics Modeling of Two-Phase Boiling Flow and Critical Heat Flux
,”
ASME
Paper No. ICONE22-30844.
44.
Li
,
H.
,
Vasquez
,
S. A.
,
Punekar
,
H.
, and
Muralikrishnan
,
R.
,
2011
, “
Prediction of Boiling and Critical Heat Flux Using an Eulerian Multiphase Boiling Model
,”
ASME
Paper No. IMECE2011-65539.
45.
Aminfar
,
H.
,
Mohammadporfard
,
M.
, and
Maroofiazar
,
R.
,
2013
, “
Eulerian Simulation of Subcooled Boiling Flow in Straight and Curved Annuli
,”
J. Mech. Sci. Technol.
,
27
(
5
), pp.
1295
1304
.
46.
Popoola
,
O. T.
, and
Cao
,
Y.
,
2015
, “
Application of a Reciprocatory Driven Heat Loop to High Heat Single Phase Liquid Cooling for Temperature Uniformity
,”
OAU Faculty of Technology Conference (OAU TekCONF 2015)
, Ile-Ife, Nigeria, pp.
28
37
.
You do not currently have access to this content.