At present, unless a boiler is especially designed to burn biomass, the levels of co-firing are generally limited to around 5% by mass. Higher levels of substitution sometimes lead to burner instability and other issues. In order to co-fire higher concentrations of biomass, a technique is required which can monitor flame stability at the burner level and optimize the combustion to ensure that local NOx is maintained below set limits. This paper presents an investigation of a system that monitored the combustion flame using photodiodes with responses in the ultraviolet (UV), infrared (IR), and visible (VIS) bands. The collected data were then processed using the Wigner–Ville joint time–frequency method and subsequently classified using a self-organizing map (SOM). It was found that it was possible to relate the classification of the sensor data to operational parameters, such as the burner airflow rate and NOx emissions. The developed system was successfully tested at pilot scale (500 kWt), where the ability of the system to optimize the combustion for a variety of unseen coal/biomass blends was demonstrated.

References

References
1.
Coal Industry Advisory Board, International Energy Agency
,
2010
, “
Power Generation From Coal—Measuring and Reporting Efficiency Performance and CO2 Emissions
,” International Energy Agency, Paris, France.
2.
BP
,
2011
, “
Statistical Review of World Energy
,” BP, London.
3.
Heinberg
,
R.
,
2009
,
Blackout: Coal, Climate and the Last Energy Crisis
,
Clairview Books
, New Society Publishers,
Gabriola Island, BC, Canada
.
4.
Yan
,
Y.
,
Lu
,
G.
, and
Colechin
,
M.
,
2002
, “
Monitoring and Characterisation of Pulverised Coal Flames Using Digital Imaging Techniques
,”
Fuel
,
81
(
5
), pp.
647
655
.
5.
Tan
,
C. K.
,
Wilcox
,
S. J.
, and
Ward
,
J.
,
2006
, “
Use of Artificial Intelligence Techniques for Optimisation of Co-Combustion of Coal With Biomass
,”
J. Energy Inst.
,
79
(
1
), pp.
19
25
.
6.
Sanz
,
A.
,
Ballester
,
J.
,
Hernndez
,
R.
, and
Cerecedo
,
L. M.
,
2008
, “
Advanced Monitoring of Industrial Burners Based on Fluctuating Flame Signals
,”
Fuel
,
87
(
7
), pp.
1063
1075
.
7.
Obertacke
,
R.
,
Wintrich
,
H.
,
Wintrich
,
F.
, and
Leipertz
,
A.
,
1996
, “
A New Sensor System for Industrial Combustion Monitoring and Control Using UV Emission Spectroscopy and Tomography
,”
Combust. Sci. Technol.
,
121
(
1–6
), pp.
133
151
.
8.
Tan
,
C. K.
,
Wilcox
,
S. J.
, and
Ward
,
J.
,
2002
, “
Development of a Monitoring System for Near Burner Slag Formation
,”
ASME
Paper No. IMECE2002-39300.
9.
Sami
,
M.
,
Annamalai
,
K.
, and
Wooldridge
,
M.
,
2001
, “
Co-Firing of Coal and Biomass Fuel Blends
,”
Prog. Energy Combust. Sci.
,
27
(
2
), pp.
171
214
.
10.
Cooke, M. J.
,
1996
, “
Coal R&D Successes in the UK
,” The Coal Research Forum, UK.
11.
European Environment Agency
,
2012
, “
Atmospheric Greenhouse Gas Concentrations (CSI 013)
,” European Environment Agency, Brussels, Belgium.
12.
Kavalov
,
B.
, and
Peteves
,
S. D.
,
2007
, “
The Future of Coal
,” European Commission Directorate-General Joint Research Center, Institute for Energy, Luxembourg, Technical Report No. EUR 22644.
13.
Al-Mansour
,
F.
, and
Zuwala
,
J.
,
2010
, “
An Evaluation of Biomass Co-Firing in Europe
,”
Biomass Bioenergy
,
34
(
5
), pp.
620
629
.
14.
Communication From the Commission to the European Parliament and the Council
,
2007
, “
Renewable Energy Roadmap: Renewable Energies in the 21st Century: Building a Sustainable Future
.”
15.
OMahoney
,
A.
,
Thorne
,
F.
, and
Denny
,
E.
,
2013
, “
A Cost-Benefit Analysis of Generating Electricity From Biomass
,”
Energy Policy
,
57
, pp.
347
354
.
16.
EU
,
2001
, “
Large Combustion Plants Directive
,” Directive 2001/80/EC.
17.
Lu
,
G.
,
Yan
,
Y.
,
Cornwell
,
S.
,
Whitehouse
,
M.
, and
Riley
,
G.
,
2008
, “
Impact of Co-Firing Coal and Biomass on Flame Characteristics and Stability
,”
Fuel
,
87
(
7
), pp.
1133
1140
.
18.
Hein
,
K.
, and
Bemtgen
,
J.
,
1998
, “
Eu Clean Coal Technology—Co-Combustion of Coal and Biomass
,”
Fuel Process. Technol.
,
54
, pp.
159
169
.
19.
Minchner, A.
,
2011
, “
Coal Research and Engineering Needs in the UK
,” Coal Research Forum, Cheltenham, UK.
20.
Demirbas
,
A.
,
2003
, “
Sustainable Cofiring of Biomass With Coal
,”
Energy Convers. Manage.
,
44
(
9
), pp.
1465
1479
.
21.
Leipertz
,
A.
,
Obertacke
,
R.
, and
Wintrich
,
F.
,
1996
, “
Industrial Combustion Control Using UV Emission Tomography
,”
Symp. (Int.) Combust.
,
26
(
2
), pp.
2869
2875
.
22.
Kalogirou
,
S. A.
,
2003
, “
Artificial Intelligence for the Modelling and Control of Combustion Processes: A Review
,”
Prog. Energy Combust. Sci.
,
29
(
6
), pp.
515
566
.
23.
Valliappan
,
P.
,
Wilcox
,
S. J.
, and
Jagiełło
,
K.
,
2012
, “
The Monitoring and Control of Burners Co-Firing Coal and Biomass
,”
ASME
Paper No. DETC2012-70237.
24.
Wigner
,
E.
,
1932
, “
On the Quantum Correction for the Thermodynamic Equilibrium
,”
Phys. Rev.
,
40
(
5
), pp.
749
759
.
25.
Staszewski
,
W. J.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
,
1997
, “
Time-Frequency Analysis in Gearbox Fault Detection Using the Wigner-Ville Distribution and Pattern Recognition
,”
Mech. Syst. Signal Process.
,
11
(
5
), pp.
673
692
.
26.
Kohonen
,
T.
,
Oja
,
E.
,
Simula
,
O.
,
Visa
,
A.
, and
Kangas
,
J.
,
1996
, “
Engineering Applications of the Self-Organizing Map
,”
Proc. IEEE
,
84
(
10
), pp.
1358
1384
.
27.
Kohonen
,
T.
,
1998
, “
The Self-Organising Map
,”
Neurocomputing
,
21
(
13
), pp.
1
6
.
28.
Martín
,
B.
, and
Sanz
,
A.
,
2001
,
Neural Networks and Fuzzy Systems
,
RAMA
,
Madrid, Spain
.
29.
Mayes
,
I.
,
1999
, “
Generic NOx Control Intelligent System (GNOCIS)
,”
IEE
Colloquium on Artificial Intelligence-Based Applications for the Power Industry
(Ref. No. 1999/065), pp.
9/1
9/4
.
30.
Lu
,
G.
,
Yan
,
Y.
,
Colechin
,
M.
, and
Hill
,
R.
,
2006
, “
Monitoring of Oscillatory Characteristics of Pulverised Coal Flames Through Image Processing and Spectral Analysis
,”
IEEE Trans. Instrum. Meas.
,
55
(
1
), pp.
226
231
.
31.
Nikias
,
C. L.
, and
Petropulu
,
A. P.
,
1993
,
Higher-Order Spectra Analysis: A Non-Linear Signal Processing Framework
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Cohen
,
L.
,
1989
, “
Time-Frequency Distributions—A Review
,”
Proc. IEEE
,
77
(
7
), pp.
941
981
.
33.
Ville
,
J.
,
1948
, “
Theorie et Applications de la Notion de Signal Analytique
,”
Cables et Transmission
,
2eA
(1), pp.
61
74
.
34.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
,
1980
, “
The Wigner Distribution—A Tool for Time-Frequency Analysis. Part 1: Continuous Time Signals
,”
Philips J. Res.
,
35
(3), pp.
217
250
.
35.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
,
1980
, “
The Wigner Distribution—A Tool For Time-Frequency Analysis. Part 2: Discrete Time Signals
,”
Philips J. Res.
,
35
(3), pp.
276
300
.
36.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
,
1980
, “
The Wigner Distribution—A Tool for Time-Frequency Analysis. Part 3: Relations With Other Time-Frequency Transformations
,”
Philips J. Res.
,
35
(3), pp.
372
389
.
37.
Beghdadi
,
A.
, and
Iordache
,
R.
,
2006
, “
Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation
,”
EURASIP J. Adv. Signal Process.
,
2006
, p. 40.
38.
Boashash
,
B.
,
1988
, “
Note on the Use of the Wigner Distribution for Time-Frequency Signal Analysis
,”
IEEE Trans. Acoust. Speech Signal Process.
,
36
(
9
), pp.
1518
1521
.
39.
Haykin
,
S.
,
1999
,
Neural Networks: A Comprehensive Foundation
,
2nd, ed.
,
Pentice-Hall
,
Upper River Saddle, NJ
.
40.
Jain
,
A. K.
,
Mao
,
J. C.
, and
Mohiuddin
,
K. M.
,
1996
, “
Artificial Neural Networks: A Tutorial
,”
Computer
,
29
(
3
), pp.
31
44
.
41.
Basheer
, I
. A.
, and
Hajmeer
,
M.
,
2000
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
J. Microbiol. Methods
,
43
(
1
), pp.
3
31
.
42.
Rohwer
,
R.
,
Wynne-Jones
,
M.
, and
Wysotzki
,
F.
,
1994
, “
Neural Networks
,”
Machine Learning, Neural and Statistical Classification
,
D.
Michie
,
D. J.
Spiegelhalter
, and
C. C.
Taylor
, eds., Ellis Horwood, Upper Saddle River, NJ, Chap. 6.
You do not currently have access to this content.