To transport the energy efficiently without much dissipation, first and second law analyses of mixed convection heat transport from an array of nonisothermal rectangular vertical plate-finned heat sink are made using purely computational fluid dynamics (CFD) analysis on the governing equations. Report provides the dependence of Nusselt number, entropy production, pumping power ratio (PPR), and flow bypass factor (BF) on the inlet velocity, fin conductance parameter, thermal Grashof number (Gr), dimensionless clearance (C*), and dimensionless fin spacing (S*). Total nondimensional entropy production is found to decrease continuously with clearances for all fin spacings, except at the lowest fin spacing involving lowest Gr (= 1.8 × 105). On the other hand, at higher inlet velocities, Nusselt number indicates an optimum value with clearances. Optimum Nusselt number is found to observe in a range of S*= 0.2–0.3 for all Gr. For smaller fin spacing, PPR is noticeably higher, but at the optimum value of fin spacing, PPR reduces roughly by an order of magnitude. Interestingly, flow bypass is remarkably lower at the optimum clearance. Finally, correlation of friction factor, PPR, and entropy generation is presented.

References

References
1.
Prigogine
,
I.
,
1967
,
Introduction to Thermodynamics of Irreversible Processes
,
3rd ed.
,
Wiley
,
New York
.
2.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
3.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC
,
Boca Raton, FL
.
4.
Bahrehmand
,
D.
, and
Ameri
,
M.
,
2015
, “
Energy and Exergy Analysis of Different Solar Air Collector Systems With Natural Convection
,”
Renewable Energy
,
74
, pp.
357
368
.
5.
Farahat
,
S.
,
Sarhaddi
,
F.
, and
Ajam
,
H.
,
2009
, “
Exergetic Optimization of Flat Plate Solar Collectors
,”
Renewable Energy
,
34
(
4
), pp.
1169
1174
.
6.
Sasikumar
,
M.
, and
Balaji
,
C.
,
2002
, “
A Holistic Optimization of Convecting-Radiating Fin Systems
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1110
1116
.
7.
Rakshit
,
D.
, and
Balaji
,
C.
,
2005
, “
Thermodynamic Optimization of Conjugate Convection From a Finned Channel Using Genetic Algorithms
,”
Heat Mass Transfer
,
41
(
6
), pp.
535
544
.
8.
Shih
,
C. J.
, and
Liu
,
G. C.
,
2004
, “
Optimal Design Methodology of Plate-Fin Heat Sinks for Electronic Cooling Using Entropy Generation Strategy
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
3
), pp.
551
559
.
9.
Jian-hui
,
Z.
,
Chun-xin
,
Y.
, and
Li-na
,
Z.
,
2009
, “
Minimizing the Entropy Generation Rate of the Plate-Finned Heat Sinks Using Computational Fluid Dynamics and Combined Optimization
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1872
1879
.
10.
Iyengar
,
M.
, and
Cohen
,
A. B.
,
2002
, “
Least-Energy Optimization of Forced Convection Plate-Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Techol.
,
26
(
1
), pp.
62
70
.
11.
Culham
,
J. R.
, and
Muzychka
,
Y. S.
,
2001
, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
159
165
.
12.
Andreozzi
,
A.
,
Auletta
,
A.
, and
Manca
,
O.
,
2006
, “
Entropy Generation in Natural Convection in a Symmetrically and Uniformly Heated Vertical Channel
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3221
3228
.
13.
Das
,
B.
, and
Giri
,
A.
,
2014
, “
Second Law Analysis of an Array of Vertical Plate-Finned Heat Sink Undergoing Mixed Convection
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
42
49
.
14.
Das
,
B.
, and
Giri
,
A.
,
2014
, “
Non-Boussinésq Laminar Mixed Convection in a Non-Isothermal Fin Array
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
447
458
.
15.
Giri
,
A.
, and
Das
,
B.
,
2012
, “
A Numerical Study of Entry Region Laminar Mixed Convection Over Shrouded Vertical Fin Arrays
,”
Int. J. Therm. Sci.
,
60
, pp.
212
224
.
16.
Zhang
,
Z.
, and
Patankar
,
S. V.
,
1984
, “
Influence of Buoyancy on the Vertical Flow and Heat Transfer in a Shrouded Fin Array
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
137
140
.
17.
Al-Sarkhi
,
A.
,
Abu-Nada
,
E.
,
Akash
,
B. A.
, and
Jaber
,
J. O.
,
2003
, “
Numerical Investigation of Shrouded Fin Array Under Combined Free and Forced Convection
,”
Int. Commun. Heat Mass Transfer
,
30
(
3
), pp.
435
444
.
18.
Mukhopadhyay
,
A.
,
2010
, “
Analysis of Entropy Generation Due to Natural Convection in Square Enclosures With Multiple Discrete Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
867
872
.
19.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
20.
Giri
,
A.
,
Narasimham
,
G. S. V. L.
, and
Murthy
,
M. V. K.
,
2003
, “
Combined Natural Convection Heat and Mass Transfer From Vertical Fin Arrays
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
100
113
.
21.
Das
,
B.
, and
Giri
,
A.
,
2015
, “
Mixed Convection Heat Transfer From a Vertical Fin Array in the Presence of Vortex Generator
,”
Int. J. Heat Mass Transfer
,
82
, pp.
26
41
.
22.
Famouri
,
M.
, and
Hooman
,
K.
,
2008
, “
Entropy Generation for Natural Convection by Heated Partitions in a Cavity
,”
Int. Commun. Heat Mass Transfer
,
35
(
4
), pp.
492
502
.
23.
Daǧtekin
,
I.
,
Oztop
,
H. F.
, and
Sahin
,
A. Z.
,
2005
, “
An Analysis of Entropy Generation Through a Circular Duct With Different Shaped Longitudinal Fins for Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
171
181
.
24.
Writz
,
R. A.
,
Chen
,
W.
, and
Zhou
,
R.
,
1994
, “
Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks
,”
ASME J. Electron. Packag.
,
116
(3), pp.
206
211
.
25.
Elshafei
,
E. A. M.
,
2007
, “
Effect of Flow Bypass on the Performance of a Shrouded Longitudinal Fin Array
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2233
2242
.
You do not currently have access to this content.