In order to measure thermal interface resistance (TIR) at temperatures up to 700 °C, a test apparatus based on two copper 1D reference bars has been developed. Design details are presented with an emphasis on how the system minimizes the adverse effects of heat losses by convection and radiation on measurement accuracy. Profilometer measurements of the contacting surface are presented to characterize surface roughness and flatness. A Monte Carlo method is applied to quantify experimental uncertainties, resulting in a standard deviation of thermal resistance as low as 2.5 mm2 K/W at 700 °C. In addition, cyclic measurements of a standard thermal interface material (TIM) sample (graphite foil) are presented up to an interface temperature of 400 °C. The interface resistance results range between approximately 40 and 100 mm2 K/W. Further, a bare Cu–Cu interface is evaluated at several interface temperatures up to 700 °C.

References

References
1.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
2.
Otiaba
,
K. C.
,
Ekere
,
N. N.
,
Mallik
,
B. S.
,
Alam
,
M. O.
, and
Amalu
,
E. H.
,
2011
, “
Thermal Interface Materials for Automotive Electronic Control Unit: Trends, Technology and R&D Challenges
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2031
2043
.
3.
Amro
,
R.
,
Lutz
,
J.
,
Rudzki
,
J.
,
Thoben
,
M.
, and
Lindemann
,
A.
,
2005
, “
Double-Sided Low-Temperature Joining Technique for Power Cycling Capability at High Temperature
,”
European Conference on Power Electronics and Applications
, pp.
1
10
.
4.
Salvador
,
J. R.
,
Cho.
,
J. Y.
,
Ye
,
Z.
,
Moczygemba
,
J. E.
,
Thompson
,
A. J.
,
Sharp
,
J. W.
,
Konig
,
J. D.
,
Maloney
,
R.
,
Thompson
,
T.
,
Sakamoto
,
J.
,
Wang
,
H.
,
Wereszczak
,
A. A.
, and
Meisner
,
G. P.
,
2013
, “
Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules
,”
J. Electron. Mater.
,
42
(
7
), pp.
1389
1399
.
5.
Saviers
,
K. R.
,
Hodson
,
S. L.
,
Salvador
,
J. R.
,
Kasten
,
L. S.
, and
Fisher
,
T. S.
,
2013
, “
Carbon Nanotube Arrays for Enhanced Thermal Interfaces to Thermoelectric Modules
,”
J. Thermophys. Heat Transfer
,
27
(
3
), pp.
474
481
.
6.
Levi
,
C. G.
,
2004
, “
Emerging Materials and Processes for Thermal Barrier Systems
,”
Curr. Opin. Solid State Mater. Sci.
,
8
(
1
), pp.
77
91
.
7.
Bennett
,
G. L.
,
Lombardo
,
J. J.
,
Hemler
,
R. J.
,
Silverman
,
G.
,
Whitmore
,
C. W.
,
Amos
,
W. R.
,
Johnson
,
E. W.
,
Schock
,
A.
,
Zocher
,
R. W.
,
Keenan
,
T. K.
,
Hagan
,
J. C.
, and
Englehart
,
R. W.
,
2006
, “
Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator
,”
AIAA
Paper No. AIAA2006-4096.
8.
Saini
,
A.
,
2012
, “
High-Temperature Materials Increase Efficiency of Gas Power Plants
,”
MRS Bull.
,
37
(06), pp.
550
551
.
9.
Cola
,
B.
,
Xu
,
X.
,
Fisher
,
T. S.
,
Capano
,
M.
, and
Amama
,
P. B.
,
2008
, “
Carbon Nanotube Array Thermal Interfaces for High-Temperature Silicon Carbide Devices
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
3
), pp.
228
237
.
10.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
(
3
), pp.
215
222
.
11.
Lasance
,
C. J. M.
,
Murray
,
C. T.
,
Saums
,
D. L.
, and
Rencz
,
M.
,
2006
, “
Challenges in Thermal Interface Material Testing
,”
22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, pp.
42
49
.
12.
McNamara
,
A. J.
,
Joshi
,
Y.
, and
Zhang
,
Z. M.
,
2012
,
Characterization of Nanostructured Thermal Interface Materials—A Review
,”
Int. J. Therm. Sci.
,
62
, pp.
2
11
.
13.
“Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials,” ASTM No. D5470-12.
14.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Xu
,
X.
, and
Fisher
,
T. S.
,
2007
, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
,
101
(
5
), p.
054313
.
15.
Lin
,
W.
,
Shang
,
J.
,
Gu
,
W.
, and
Wong
,
C. P.
,
2012
, “
Parametric Study of Intrinsic Thermal Transport in Vertically Aligned Multi-Walled Carbon Nanotubes Using a Laser Flash Technique
,”
Carbon
,
50
(
4
), pp.
1591
1603
.
16.
Casalegno
,
V.
,
Vavassori
,
P.
,
Valle
,
M.
,
Ferraris
,
M.
,
Salvo
,
M.
, and
Pintsuk
,
G.
,
2010
, “
Measurement of Thermal Properties of a Ceramic/Metal Joint by Laser Flash Method
,”
J. Nucl. Mater.
,
407
(
2
), pp.
83
87
.
17.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kasani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.
18.
Costescu
,
R.
,
Wall
,
M.
, and
Cahill
,
D.
,
2003
, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
,
67
, pp.
1
5
.
19.
Hu
,
X. J.
,
Padilla
,
A. A.
,
Xu
,
J.
,
Fisher
,
T. S.
, and
Goodson
,
K. E.
,
2006
, “
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1109
1113
.
20.
Gwinn
,
J. P.
,
Saini
,
M.
, and
Webb
,
R. L.
,
2002
, “
Apparatus for Accurate Measurement of Interface Resistance of High Performance Thermal Interface Materials
,”
8th Intersociety Conference on Thermomechanical Phenomena in Electronic Systems
, pp.
644
650
.
21.
Jensen
,
C.
,
Xing
,
C.
,
Ban
,
H.
,
Barnes
,
C.
, and
Phillips
,
J.
,
2010
, “
A Thermal Conductivity Measurement System for Fuel Compacts
,”
ASME
Paper No. IMECE2010-39448.
22.
Amatya
,
R.
,
Mayer
,
P. M.
, and
Ram
,
R. J.
,
2012
, “
High Temperature Z-meter Setup for Characterizing Thermoelectric Material Under Large Temperature Gradient
,”
Rev. Sci. Instrum.
,
83
(
7
), p.
075117
.
23.
Powell
,
R.
,
Ho
,
C.
, and
Liley
,
P.
,
1966
, “
Thermal Conductivity of Selected Materials
,” U.S. Department of Commerce, National Bureau of Standards, Report No. NRSDS-NBS 8.
24.
Nakos
,
J.
,
2004
, “
Uncertainty Analysis of Thermocouple Measurements Used in Normal and Abnormal Thermal Environment Experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site
,” Sandia National Laboratory Report No. SAND2004-1023.
25.
Xia
,
H.
,
Drymiotis
,
F.
,
Chen
,
C. L.
,
Wu
,
A.
,
Chen
,
Y. Y.
, and
Snyder
,
G. J.
,
2015
, “
Bonding and High-Temperature Reliability of NiFeMo Alloy/n-Type PbTe Joints for Thermoelectric Module Applications
,”
Journal of Materials Science
,
50
(
7
), pp.
2700
2708
.
26.
HITHERMTM Thermal Interface Materials
,
2014
, GrafTech International, Technical Data Sheet No. 318.
27.
Smalc
,
M.
,
Norley
,
J.
,
Reynolds
, III,
A. R.
,
Pachuta
,
R.
, and
Krassowski
,
D. W.
,
2003
, “
Advanced Thermal Interface Materials Using Natural Graphite
,”
ASME
Paper No. IPACK2003-35113.
You do not currently have access to this content.