This is a novel study for assessing the heat transfer enhancement in a multi-row inline-tube heat exchanger using hybrid vortex generator (VG) arrays, i.e., rectangular winglet pairs (RWPs) with different geometrical configurations installed in coherence for enhanced heat transfer. The three-dimensional numerical study uses a full scale seven-tube inline heat exchanger model. The effect of roll of rectangular winglet VG on heat transfer enhancement is analyzed and optimized roll angle is determined for maximum heat transfer enhancement. Four different configurations are analyzed and compared in this regard: (a) single RWP (no roll); (b) 3RWP-inline array(alternating tube row with no roll of VGs); (c) single RWP (with optimized roll angle VGs); and (d) 3RWP-inline array(alternating tube row with all VGs having optimized roll angle). It was found that the inward roll of VGs increased the heat transfer from the immediately downstream tube but reduced heat transfer enhancement capability of other VG pairs downstream. Further, four different hybrid configurations of VGs were analyzed and the optimum configuration was obtained. For the optimized hybrid configuration at Re = 670, RWP with optimized roll angle increased heat transfer by 17.5% from the tube it was installed on and by 42% from the immediately downstream tube. Increase in j/ƒ of 36.7% is obtained by use of hybrid VGs in the optimized hybrid configuration. The deductions from the current study are supposed to well enhance the performance of heat exchangers with different design configurations.

References

References
1.
Taylor
,
H. D.
,
1947
, “
The Elimination of Diffuser Separation by Vortex Generators
,” United Aircraft Corporation Report No. R-4012-3.
2.
Gad-el-Hak
,
M.
, and
Brushnell
,
D.
,
1991
, “
Separation Control: Review
,”
ASME J. Fluids Eng.
,
113
(
1
), pp.
5
30
.
3.
Kuya
,
Y.
,
Takeda
,
K.
,
Zhang
,
X.
,
Beeton
,
S.
, and
Pandaleon
,
T.
,
2009
, “
Flow Separation Control on a Racecar Wing With Vortex Generators
,”
ASME J. Fluids Eng.
,
131
(
12
), p.
121103
.
4.
Aoki
,
K.
,
Muto
,
K.
, and
Okanaga
,
H.
,
2010
, “
Aerodynamic Characteristics and Flow Pattern of a Golf Ball With Rotation
,”
Procedia Eng.
,
2
(
2
), pp.
2431
2436
.
5.
Schubauer
,
G. B.
, and
Spangenberg
,
W. G.
,
1960
, “
Forced Mixing in Boundary Layers
,”
J. Fluid Mech.
,
8
(01), pp.
10
12
.
6.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
,
11
(
3
), pp.
295
309
.
7.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N.
,
1993
, “
Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
7
(
4
), pp.
287
295
.
8.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.
9.
Biswas
,
G.
,
Torii
,
K.
,
Fujji
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3441
3451
.
10.
Russell
,
C. M. B.
,
Jones
,
T. V.
, and
Lee
,
G. H.
,
1986
, “
Heat Transfer Enhancement Using Vortex Generators
,”
Eighth International Heat Transfer Conference
, Vol.
6
, pp.
2909
2913
.
11.
Turk
,
A. Y.
, and
Junkhan
,
G. H.
,
1986
, “
Heat Transfer Enhancement Downstream of Vortex Generators on a Flat Plate
,”
Eighth International Heat Transfer Conference
, Vol.
6
, pp.
2903
2908
.
12.
Fiebig
,
M.
,
Kallweit
,
P.
,
Mitra
,
N.
, and
Tiggelbeck
,
S.
,
1991
, “
Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow
,”
Exp. Therm. Fluid Sci.
,
4
(
1
), pp.
103
114
.
13.
Fiebig
,
M.
,
1995
, “
Embedded Vortices in Internal Flow. Heat Transfer and Pressure Loss Enhancement
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
376
388
.
14.
Biswas
,
G.
,
Mitra
,
N. K.
, and
Feibig
,
M.
,
1994
, “
Heat Transfer Enhancement in Fin-Tube Exchangers by Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
283
291
.
15.
Deb
,
P.
, and
Biswas
,
G.
,
1995
, “
Heat Transfer and Flow Structure in Laminar and Turbulent Flows in a Rectangular Channel With Longitudinal Vortices
,”
Int. J. Heat Mass Transfer
,
38
(
13
), pp.
2427
2444
.
16.
Fiebig
,
M.
,
Grosse-Gorgemann
,
A.
, and
Mitra
,
N. K.
,
1995
, “
Conjugate Heat Transfer of a Finned Tube Part A: Heat Transfer Behaviour and Occurrence of Heat Transfer Reversal
,”
Numer. Heat Transfer, Part A
,
28
(
2
), pp.
133
146
.
17.
Fiebig
,
M.
,
Chen
,
Y.
,
Grosse-Gorgemann
,
A.
, and
Mitra
,
N. K.
,
1995
, “
Conjugate Heat Transfer of a Finned Tube Part B: Heat Transfer Augmentation and Avoidance of Heat Transfer Reversal by Longitudinal Vortex Generators
,”
Numer. Heat Transfer, Part A
,
28
(
2
), pp.
147
155
.
18.
Tutar
,
M.
, and
Akkoca
,
A.
,
2004
, “
Numerical Analysis of Fluid Flow and Heat Transfer Characteristics in Three Dimensional Plate Fin-and-Tube Heat Exchangers
,”
Numer. Heat Transfer, Part A
,
46
(
3
), pp.
301
321
.
19.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2007
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer
,
129
(
9
), pp.
1156
1167
.
20.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2012
, “
Effect of Longitudinal Vortex Generator on Heat Transfer in Rectangular Channels
,”
Appl. Therm. Eng.
,
37
, pp.
67
72
.
21.
Chu
,
P.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Three-Dimensional Numerical Study of Flow and Heat Transfer Enhancement Using Vortex Generators in Fin-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
,
131
(
9
), p.
091903
.
22.
He
,
Y.-L.
,
Chu
,
P.
,
Tao
,
W. Q.
,
Zhang
,
Y.
, and
Tao
,
X.
,
2012
, “
Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers With Rectangular Winglet Type Vortex Generators
,”
Appl. Therm. Eng.
,
61
, pp.
770
783
.
23.
Salviano
,
L. O.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2015
, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization
,”
Int. J. Heat Mass Transfer
,
82
, pp.
373
387
.
24.
Ferrouillat
,
S.
,
Tochon
,
P.
,
Garnier
,
C.
, and
Peerhossaini
,
H.
,
2006
, “
Intensification of Heat-Transfer and Mixing in Multifunctional Heat Exchangers by Artificially Generated Streamwise Vorticity
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
1820
1829
.
25.
Torii
,
K.
,
Kwak
,
K.
, and
Nishino
,
K.
,
2002
, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3795
3801
.
You do not currently have access to this content.