An Eulerian–Lagrangian model is used to simulate turbulent-forced convection heat transfer in internal flow using dilute nanofluids. For comparison, a single-phase model of the nanofluid which describes a nanofluid as a single-phase fluid with appropriately defined thermophysical properties is also implemented. The Eulerian–Lagrangian model, which requires only the properties of the base fluid and nanoparticles separately, is seen to predict the heat transfer characteristics accurately without resort to any models for the thermophysical properties. The simulations with the single-phase model show that it can very well be used to predict the heat transfer behavior of dilute nanofluids as long as the thermophysical properties are directly those measured experimentally or those predicted from a Brownian motion based model. These approaches are particularly useful for engineering estimation of heat transfer performance of equipment where nanofluids are expected to be used.

References

References
1.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Chandra Bose
,
A.
,
2010
, “
Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
210
216
.
2.
Yoo
,
D.
,
Hong
,
K. S.
, and
Yang
,
H.
,
2007
, “
Study of Thermal Conductivity of Nanofluids for the Applications of Heat Transfer Fluids
,”
Thermochim. Acta
,
455
, pp.
66
69
.
3.
Das
,
S. K.
,
Putra
,
N.
,
Theisen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
4.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
706
714
.
5.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.
6.
Oh
,
D.
,
Jain
,
A.
,
Eaton
,
J.
,
Goodson
,
K.
, and
Lee
,
J.
,
2008
, “
Thermal Conductivity Measurement and Sedimentation Detection of Aluminium Oxide Nanofluids by Using the 3 Omega Method
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1456
1461
.
7.
Murshed
,
S. M. S.
, and
Leong
,
K. C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
367
373
.
8.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
9.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
10.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2010
, “
An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under a Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
, pp.
334
344
.
11.
Farajollahi
,
B.
,
Etemad
,
S. Gh.
, and
Hojjat
,
M.
,
2010
, “
Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
, pp.
12
17
.
12.
Kayhani
,
M.
,
Soltanzadeh
,
H.
,
Heyhat
,
M.
,
Nazari
,
M.
, and
Kowsary
,
F.
,
2012
, “
Experimental Study of Convective Heat Transfer and Pressure Drop of TiO2/Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
39
(
3
), pp.
456
462
.
13.
Syam Sunder
,
L.
,
Naik
,
M.
,
Sharma
,
K.
,
Singh
,
M.
, and
Siva Reddy
,
T.
,
2012
, “
Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube With Fe3O4 Magnetic Nanofluid
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
65
71
.
14.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
.
15.
Peyghambarzadeh
,
S.
,
Hashemabadi
,
S.
,
Hoseini
,
S.
, and
Seifi Jamnani
,
M.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1283
1290
.
16.
Hojjat
,
M.
,
Etemad
,
S.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Turbulent Forced Convection Heat Transfer of Non-Newtonian Nanofluids
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1351
1356
.
17.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
Y.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
,
2007
, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2272
2281
.
18.
Sonawane
,
S.
,
Patankar
,
K.
,
Fogla
,
A.
,
Puranik
,
B.
,
Bhandarkar
,
U.
, and
Sunil Kumar
,
S.
,
2011
, “
An Experimental Investigation of Thermo-Physical Properties and Heat Transfer Performance of Al2O3-Aviation Turbine Fuel Nanofluids
,”
Appl. Therm. Eng.
,
31
, pp.
2841
2849
.
19.
Sonawane
,
S.
,
Bhandarkar
,
U.
,
Puranik
,
B.
, and
Sunil Kumar
,
S.
,
2012
, “
Experimental Characterization of Aviation Turbine Fuel-Metal Oxide Nanofluids for Internal Forced Convection Heat Transfer Enhancement
,”
J. Thermophys. Heat Transfer
,
26
(
4
), pp.
619
628
.
20.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
N.
,
2011
, “
Numerical Investigation on Nanofluids Turbulent Convection Heat Transfer Inside a Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
341
349
.
21.
Maiga
,
S.
,
Nguyen
,
C.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviour of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
,
35
, pp.
543
557
.
22.
Rostamani
,
M.
,
Hosseinizadeh
,
S.
,
Gorji
,
M.
, and
Khodadadi
,
J.
,
2010
, “
Numerical Study of Turbulent Forced Convection Flow of Nanofluids in a Long Horizontal Duct Considering Variable Properties
,”
Int. Commun. Heat Mass transfer
,
37
(
10
), pp.
1426
1431
.
23.
Rahman
,
M.
,
Billah
,
M.
,
Rahman
,
A.
,
Kalam
,
M.
, and
Ahsan
,
A.
,
2011
, “
Numerical Investigation of Heat Transfer Enhancement of Nanofluids in an Inclined Lid-Driven Triangular Enclosure
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1360
1367
.
24.
Demir
,
H.
,
Dalkilic
,
A.
,
Kureka
,
N.
,
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2011
, “
Numerical Investigation on the Single Phase Forced Convection Heat Transfer Characteristics of TiO2 Nanofluids in a Double Tube Counter Flow Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
218
228
.
25.
Lotfi
,
R.
,
Saboohi
,
Y.
, and
Rashidi
,
A.
,
2010
, “
Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
74
78
.
26.
He
,
Y.
,
Men
,
Y.
,
Zhao
,
Y.
,
Lu
,
H.
, and
Ding
,
Y.
,
2009
, “
Numerical Investigation Into the Convective Heat Transfer of TiO2 Nanofluids Flowing Through a Straight Tube Under the Laminar Flow Conditions
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1965
1972
.
27.
Wen
,
D.
,
Zhang
,
L.
, and
He
,
Y.
,
2009
, “
Flow and Migration of Nanoparticle in a Single Channel
,”
Heat Mass Transfer
,
45
(
8
), pp.
1061
1067
.
28.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
, pp.
3632
3642
.
29.
Aminfar
,
H.
, and
Motallebzadeh
,
R.
,
2011
, “
Numerical Investigation of the Effects of Nanoparticle Diameter on Velocity Field and Nanoparticle Distribution of Nanofluid Using Lagrangian-Eulerian Approach
,”
J. Dispersion Sci. Technol.
,
32
(
9
), pp.
1311
1317
.
30.
Fluent
,
2005
,
Fluent 6.2 User Manual
,
Fluent, Inc.
,
New York
.
31.
Morsi
,
S.
, and
Alexander
,
A.
,
1972
, “
An Investigation of Particle Trajectories in Two Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
32.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
Singapore
.
33.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P.
,
2006
, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
588
595
.
34.
Masoumi
,
N.
,
Sohrabi
,
N.
, and
Behzadmehr
,
A.
,
2009
, “
A New Model for Calculating the Effective Viscosity of Nanofluids
,”
J. Phys. D: Appl. Phys.
,
42
(
5
), p.
055501
.
35.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.
You do not currently have access to this content.