In this study, the problem of magnetohydrodynamics (MHD) mixed convection of lid-driven cavity with a triangular-wave shaped corrugated bottom wall filled with a non-Newtonian power-law fluid is numerically studied. The bottom corrugated wall of the cavity is heated and the top moving wall is kept at a constant lower temperature while the vertical walls of the enclosure are considered to be adiabatic. The governing equations are solved by the Galerkin weighted residual finite element formulation. The influence of the Richardson number (between 0.01 and 100), Hartmann number (between 0 and 50), inclination angle of the magnetic field (between 0 deg and 90 deg), and the power-law index (between 0.6 and 1.4) on the fluid flow and heat transfer characteristics are numerically investigated. It is observed that the effects of free convection are more pronounced for a shear-thinning fluid and the buoyancy force is weaker for the dilatant fluid flow compared to that of the Newtonian fluid. The averaged heat transfer decreases with increasing values of the Richardson number and enhancement is more effective for a shear-thickening fluid. At the highest value of the Hartmann number, the averaged heat transfer is the lowest for a pseudoplastic fluid. As the inclination angle of the magnetic field increases, the averaged Nusselt number generally enhances.

References

References
1.
Nkurikiyimfura
,
I.
,
Wang
,
Y.
, and
Pan
,
Z.
,
2013
, “
Heat Transfer Enhancement by Magnetic Nanofluids—A Review
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
548
561
.
2.
Hasanuzzaman
,
M.
,
Oztop
,
H. F.
,
Rahman
,
M.
,
Rahim
,
N.
,
Saidur
,
R.
, and
Varol
,
Y.
,
2012
, “
Magnetohydrodynamic Natural Convection in Trapezoidal Cavities
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1384
1394
.
3.
Hossain
,
M. S.
, and
Alim
,
M. A.
,
2014
. “
MHD Free Convection Within Trapezoidal Cavity With Non-Uniformly Heated Bottom Wall
,”
Int. J. Heat Mass Transfer
,
69
, pp.
327
336
.
4.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2014
, “
Effect of a Rotating Cylinder in Forced Convection of Ferrofluid Over a Backward Facing Step
,”
Int. J. Heat Mass Transfer
,
71
, pp.
142
148
.
5.
Bednarz
,
T.
,
Patterson
,
J. C.
,
Lei
,
C.
, and
Ozoe
,
H.
,
2009
, “
Enhancing Natural Convection in a Cube Using a Strong Magnetic Field—Experimental Heat Transfer Rate Measurements and Flow Visualization
,”
Int. Commun. Heat Mass Transfer
,
36
(
8
), pp.
781
786
.
6.
Grosan
,
T.
,
Revnic
,
C.
,
Pop
,
I.
, and
Ingham
,
D.
,
2009
, “
Magnetic Field and Internal Heat Generation Effects on the Free Convection in a Rectangular Cavity Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1525
1533
.
7.
Yu
,
P.
,
Qiu
,
J.
,
Qin
,
Q.
, and
Tian
,
Z. F.
,
2013
, “
Numerical Investigation of Natural Convection in a Rectangular Cavity Under Different Directions of Uniform Magnetic Field
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1131
1144
.
8.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
,
Ganji
,
D.
,
Soleimani
,
S.
, and
Seyyedi
,
S.
,
2012
, “
Natural Convection of Nanofluids in an Enclosure Between a Circular and a Sinusoidal Cylinder in the Presence of Magnetic Field
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1435
1443
.
9.
Azimi
,
M.
,
Azimi
,
A.
, and
Mirzaei
,
M.
,
2015
, “
Analytical Investigation of MHD Jeffery Hamel Problem With Graphene Oxide Nanoparticles Using Goham
,”
J. Comput. Theoritical Nanosci.
,
12
(
6
), pp.
991
995
.
10.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2014
, “
Numerical Study of MHD Mixed Convection in a Nanofluid Filled Lid Driven Square Enclosure With a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
78
, pp.
741
754
.
11.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2014
, “
MHD Mixed Convection of Nanofluid Filled Partially Heated Triangular Enclosure With a Rotating Adiabatic Cylinder
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
5
), pp.
2150
2162
.
12.
Selimefendigil
,
F.
,
Oztop
,
H. F.
, and
Al-Salem
,
K.
,
2014
, “
Natural Convection of Ferrofluids in Partially Heated Square Enclosures
,”
J. Magn. Magn. Mater.
,
372
, pp.
122
133
.
13.
Oztop
,
H. F.
,
Al-Salem
,
K.
, and
Pop
,
I.
,
2011
, “
MHD Mixed Convection in a Lid-Driven Cavity With Corner Heater
,”
Int. J. Heat Mass Transfer
,
54
, pp.
494
3504
.
14.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Ferrohydrodynamic and Magnetohydrodynamic Effects on Ferrofluid Flow and Convective Heat Transfer
,”
Energy
,
75
, pp.
400
410
.
15.
Ahmed
,
M.
,
Shuaib
,
N.
,
Yusoff
,
M.
, and
Al-Falahi
,
A.
,
2011
, “
Numerical Investigations of Flow and Heat Transfer Enhancement in a Corrugated Channel Using Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1368
1375
.
16.
Hasan
,
M. N.
,
Saha
,
S. C.
, and
Gu
,
Y.
,
2012
, “
Unsteady Natural Convection Within a Differentially Heated Enclosure of Sinusoidal Corrugated Side Walls
,”
Int. J. Heat Mass Transfer
,
55
, pp.
5696
5708
.
17.
Hussain
,
S. H.
,
Hussein
,
A. K.
, and
Mohammed
,
R. N.
,
2012
, “
Studying the Effects of a Longitudinal Magnetic Field and Discrete Isoflux Heat Source Size on Natural Convection Inside a Tilted Sinusoidal Corrugated Enclosure
,”
Comput. Math. Appl.
,
64
(
4
), pp.
476
488
.
18.
Mendu
,
S. S.
, and
Das
,
P.
,
2012
, “
Flow of Power-Law Fluids in a Cavity Driven by the Motion of Two Facing Lids—A Simulation by Lattice Boltzmann Method
,”
J. Non-Newtonian Fluid Mech.
,
175
, pp.
10
24
.
19.
Haque
,
S.
,
Lashgari
,
I.
,
Giannetti
,
F.
, and
Brandt
,
L.
,
2012
, “
Stability of Fluids With Shear-Dependent Viscosity in the Lid-Driven Cavity
,”
J. Non-Newtonian Fluid Mech.
,
173
, pp.
49
61
.
20.
Kefayati
,
G.
,
2014
, “
Simulation of Magnetic Field Effect on Natural Convection of Non-Newtonian Power-Law Fluids in a Sinusoidal Heated Cavity Using FDLBM
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
139
153
.
21.
Kefayati
,
G.
,
2014
, “
FDLBM Simulation of Magnetic Field Effect on Non-Newtonian Blood Flow in a Cavity Driven by the Motion of Two Facing Lids
,”
Powder Technol.
,
253
, pp.
325
337
.
22.
Kefayati
,
G.
,
2014
, “
FDLBM Simulation of Magnetic Field Effect on Natural Convection of Non-Newtonian Power-Law Fluids in a Linearly Heated Cavity
,”
Powder Technol.
,
256
, pp.
87
99
.
23.
Pirmohammadi
,
M.
, and
Ghassemi
,
M.
,
2009
, “
Effect of Magnetic Field on Convection Heat Transfer Inside a Tilted Square Enclosure
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
776
780
.
24.
Sarris
,
I.
,
Zikos
,
G.
,
Grecos
,
A.
, and
Vlachos
,
N.
,
2006
, “
On the Limits of Validity of the Low Magnetic Reynolds Number Approximation in MHD Natural-Convection Heat Transfer
,”
Numer. Heat Transfer Part B
,
50
, pp.
158
180
.
You do not currently have access to this content.