Density measurements were performed on several nanofluids containing nanoscale particles of aluminum oxide (Al2O3), zinc oxide (ZnO), copper oxide (CuO), titanium oxide (TiO2), and silicon dioxide (SiO2). These particles were individually dispersed in a base fluid of 60:40 propylene glycol and water (PG/W) by volume. Additionally, carbon nanotubes (CNTs) dispersed in de-ionized water (DI) was also tested. Initially, a benchmark test was performed on the density of the base fluid in the temperature range of 0–90 °C. The measured data agreed within a maximum error of 1.6% with the values presented in the handbook of American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE). After this validation run, the density measurements of various nanofluids with nanoparticle volumetric concentrations from 0 to 6% and nanoparticle sizes ranging from 10 to 76 nm were performed. The temperature range of the measurements was from 0 to 90 °C. These results were compared with the values predicted by a currently acceptable theoretical equation for nanofluids. The experimental results showed good agreement with the theoretical equation with a maximum deviation of 3.8% for copper oxide nanofluid and average deviation of 0.1% for all the nanofluids tested.

References

References
1.
Choi
,
S.
, and
Eastman
,
J.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments Applications of Non-Newtonian Flows
, Vol.
231
,
ASME
,
New York
, pp.
99
105
.https://www.researchgate.net/profile/Jeffrey_Eastman/publication/236353373_Enhancing_thermal_conductivity_of_fluids_with_nanoparticles._ASME_FED/links/0f3175336e78aa9c4c021021.pdf
2.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
–720.
3.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.
4.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Mahagaonkar
,
B. M.
,
2009
, “
Density Measurement of Different Nanofluids and Their Comparision With Theory
,”
Pet. Sci. Technol.
,
27
(
6
), pp.
612
624
.
5.
ASHRAE
,
2009
, “
Physical Properties of Secondary Coolants (Brines)
,”
ASHRAE Handbook
,
American Society of Heating Refrigerator and Air Conditioning Engineers, Inc.
,
Atlanta, GA
.
6.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
3rd ed.
,
McGraw-Hill
,
New York
.
7.
Cheremisinoff
,
N. P.
,
1986
,
Encyclopedia of Fluid Mechanics
, Vol.
5
,
Gulf Publishing
,
Houston, TX
.
8.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metalic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
9.
Bejan
,
A.
,
1993
,
Heat Transfer
,
Wiley
,
New York
.
10.
Huminic
,
G.
, and
Huminic
,
A.
,
2012
, “
Application of Nanofluids in Heat Exchangers: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5625
5638
.
11.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
12.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.
13.
Cabaleiro
,
D.
,
Pastoriza-Gallego
,
M. J.
,
Piñeiro
,
M. M.
,
Legido
,
J. L.
, and
Lugo
,
L.
,
2012
, “
Thermophysical Properties of (Diphenyl Ether + Biphenyl) Mixtures for Their Use as Heat Transfer Fluids
,”
J. Chem. Thermodyn.
,
50
, pp.
80
88
.
14.
Pastoriza-Gallego
,
M. J.
,
Casanova
,
C.
,
Legido
,
J. L.
, and
Piñeiro
,
M. M.
,
2011
, “
CuO in Water Nanofluid: Influence of Particle Size and Polydispersity on Volumetric Behaviour and Viscosity
,”
Fluid Phase Equilib.
,
300
(
1–2
), pp.
188
196
.
15.
Pastoriza-Gallego
,
M. J.
,
Casanova
,
C.
,
Paramo
,
R.
,
Barbes
,
B.
,
Legido
,
J. L.
, and
Pineiro
,
M. M.
,
2009
, “
A Study on Stability and Thermophysical Properties (Density and Viscosity) of Al2O3 in Water Nanofluid
,”
J. Appl. Phys.
,
106
(
6
), p.
064301
.
16.
Martin
,
A.
, and
Bou-Ali
,
M. M.
,
2011
, “
Determination of Thermal Diffusion Coefficient of Nanofluid: Fullerene–Toluene
,”
C. R. Méc.
,
339
(
5
), pp.
329
334
.
17.
Kumaresan
,
V.
, and
Velraj
,
R.
,
2012
, “
Experimental Investigation of the Thermo-Physical Properties of Water–Ethylene Glycol Mixture Based CNT Nanofluids
,”
Thermochim. Acta
,
545
, pp.
180
186
.
18.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
.
19.
Beck
,
M. P.
,
Sun
,
T. F.
, and
Teja
,
A. S.
,
2007
, “
The Thermal Conductivity of Alumina Nanoparticles Dispersed in Ethylene Glycol
,”
Fluid Phase Equilib.
,
260
(
2
), pp.
275
278
.
20.
Beck
,
M. P.
,
Yuan
,
Y. H.
,
Warrier
,
P.
, and
Teja
,
A. S.
,
2009
, “
The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids
,”
J. Nanoparticle Res.
,
11
(
5
), pp.
1129
1136
.
21.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2012
, “
A Review and Analysis on Influence of Temperature and Concentration of Nanofluids on Thermophysical Properties, Heat Transfer and Pumping Power
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4063
4078
.
22.
Hemalatha
,
J.
,
Prabhakaran
,
T.
, and
Nalini
,
R. P.
,
2011
, “
A Comparative Study on Particle–Fluid Interactions in Micro and Nanofluids of Aluminium Oxide
,”
Microfluid. Nanofluid.
,
10
(
2
), pp.
263
270
.
23.
Alfa Aesar
,
2014
, www.alfaaesar.com
24.
Nanoamor
,
2014
, “
Nanostructured and Amorphous Materials.
http://www.nanoamor.com/home
25.
NanoLab, 2014, www.nano-lab.com
26.
Branson Ultrasonics
,
2010
,
Bransonic Tabletop Ultrasonic Cleaners
,
Branson Ultrasonics Corp.
,
Danbury, CT
.
27.
Anton Parr
,
2012
,
Digital Density Meter for Liquids and Gases DMA 4500
,
Anton Paar GmbH
,
Graz, Austria
.
28.
Yaws
,
C. L.
,
1999
,
Chemical Propeties Handbook
,
McGraw-Hill
,
New York
.
29.
Hong-Yi
,
L.
, and
Guojie
,
L.
,
1995
, “
A Generalized Equation of State for Liquid Density Calculation
,”
Fluid Phase Equilib.
,
108
(1–2), pp.
15
25
.
30.
Valderrama
,
J. O.
, and
Abu-sharkh
,
B. F.
,
1989
, “
Generalized Rackett-Type Correlations to Predict the Density of Saturated Liquids and Petroleum Fractions
,”
Fluid Phase Equilib.
,
51
, pp.
87
100
.
31.
Vetere
,
A.
,
1992
, “
Again the Rackett Equation
,”
Chem. Eng. J.
,
49
(
1
), pp.
27
33
.
32.
Moran
,
M.
,
Shapiro
,
H.
,
Boettner
,
D.
, and
Bailey
,
M.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
Wiley
,
New York
.
33.
Leena
,
M.
,
Srinivasan
,
S.
, and
Prabhaharan
,
M.
,
2015
, “
Evaluation of Acoustical Parameters and Thermal Conductivity of TiO2-Ethylene Glycol Nanofluid Using Ultrasonic Velocity Measurements
,”
Nanotechnol. Rev.
,
4
(
5
), pp.
449
456
.
34.
Hemmat Esfe
,
M.
,
Karimipour
,
A.
,
Yan
,
W. M.
,
Akbari
,
M.
,
Safaei
,
M. R.
, and
Dahari
,
M.
,
2015
, “
Experimental Study on Thermal Conductivity of Ethylene Glycol Based Nanofluids Containing Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
88
, pp.
728
734
.
35.
Xing
,
M.
,
Yu
,
J.
, and
Wang
,
R.
,
2015
, “
Experimental Study on the Thermal Conductivity Enhancement of Water Based Nanofluids Using Different Types of Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
88
, pp.
609
616
.
36.
Buonomo
,
B.
,
Manca
,
O.
,
Marinelli
,
L.
, and
Nardini
,
S.
,
2015
, “
Effect of Temperature and Sonication Time on Nanofluid Thermal Conductivity Measurements by Nano-Flash Method
,”
Appl. Therm. Eng.
,
91
, pp.
181
190
.
37.
Hemmat Esfe
,
M.
,
Saedodin
,
S.
,
Biglari
,
M.
, and
Rostamian
,
H.
,
2015
, “
Experimental Investigation of Thermal Conductivity of CNTs-Al2O3/Water: A Statistical Approach
,”
Int. Commun. Heat Mass Transfer
,
69
, pp.
29
33
.
38.
Hemmat Esfe
,
M.
,
Rostamian
,
H.
,
Afrand
,
M.
,
Karimipour
,
A.
, and
Hassani
,
M.
,
2015
, “
Modeling and Estimation of Thermal Conductivity of MgO–Water/EG (60:40) by Artificial Neural Network and Correlation
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
98
103
.
39.
Haghighi
,
E. B.
,
Utomo
,
A. T.
,
Ghanbarpour
,
M.
,
Zavareh
,
A. I. T.
,
Nowak
,
E.
,
Khodabandeh
,
R.
,
Pacek
,
A. W.
, and
Palm
,
B.
,
2015
, “
Combined Effect of Physical Properties and Convective Heat Transfer Coefficient of Nanofluids on Their Cooling Efficiency
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
32
42
.
40.
Bianco
,
V.
,
Manca
,
O.
,
Nardini
,
S.
, and
Vafai
,
K.
, eds.,
2015
,
Heat Transfer Enhancement With Nanofluids
,
CRC Press
,
Boca Raton, FL
.
41.
Mariano
,
A.
,
Pastoriza-Gallego
,
M. J.
,
Lugo
,
L.
,
Mussari
,
L.
, and
Piñeiro
,
M. M.
,
2015
, “
Co3O4 Ethylene Glycol-Based Nanofluids: Thermal Conductivity, Viscosity and High Pressure Density
,”
Int. J. Heat Mass Transfer
,
85
, pp.
54
60
.
42.
Cabaleiro
,
D.
,
Nimo
,
J.
,
Pastoriza-Gallego
,
M. J.
,
Piñeiro
,
M. M.
,
Legido
,
J. L.
, and
Lugo
,
L.
,
2015
, “
Thermal Conductivity of Dry Anatase and Rutile Nano-Powders and Ethylene and Propylene Glycol-Based TiO2 Nanofluids
,”
J. Chem. Thermodyn.
,
83
, pp.
67
76
.
43.
Nandhakumar
,
R.
, and
Senthilkumar
,
D.
,
2015
, “
Preparation and Thermophysical Property Evaluation of Al2O3-Ethylene Glycol and TiO2-Ethylene Glycol Nanofluids for Heat Transfer Applications
,”
Int. J. Appl. Eng. Res.
,
10
(
13
), pp.
33226
33229
.
44.
Said
,
Z.
,
Saidur
,
R.
,
Hepbasli
,
A.
, and
Rahim
,
N. A.
,
2014
, “
New Thermophysical Properties of Water Based TiO2 Nanofluid—The Hysteresis Phenomenon Revisited
,”
Int. Commun. Heat Mass Transfer
,
58
, pp.
85
95
.
45.
Lee
,
J.
,
Han
,
K.
, and
Koo
,
J.
,
2014
, “
A Novel Method to Evaluate Dispersion Stability of Nanofluids
,”
Int. J. Heat Mass Transfer
,
70
, pp.
421
429
.
You do not currently have access to this content.