To understand and predict the microstructure evolution in various grades of steel, a heat transfer coupled with phase transformation model has been formulated with an enhanced stelmor cooling module. This module is capable of handling both blower assisted high cooling and retarded cooling using hoods. The stelmor module incorporates the change in ring spacing of the wire loops on the stelmor due to a change in mill speed and conveyor speed of the wire rod mill. A geometrical approach to convective and radiative losses taking into account the void fraction and shape factor of wire loop is reported. This makes the model robust by strengthening the heat transfer formulation. This paper deals with the correlation of wire rod mill process parameters on the cooling curve of wire rods. The cooling of wire rods is dependent on the stelmor operating parameters. Commercial high carbon grades require high capacity blowers for efficient cooling to refine the pearlite microstructure and impart greater strength. Welding grade wire rods (low carbon grades) on the other hand require retarded cooling to increase the ferrite grain size and decrease the ultimate tensile strength.

References

References
1.
Wright
,
R. N.
,
2010
,
Wire Technology: Process Engineering and Metallurgy
,
1st ed.
,
Butterworth-Heinemann
, Oxford, UK.
2.
Krauss
,
G.
,
2005
,
Steels: Processing, Structure, and Performance
,
1st ed.
,
ASM International
,
Materials Park, OH
.
3.
Goto
,
S.
,
Kirchheim
,
R.
,
Al-Kassab
,
T.
, and
Borchers
,
C.
,
2007
, “
Application of Cold Drawn Lamellar Microstructure for Developing Ultra-High Strength Wires
,”
Trans. Nonferrous Met. Soc. China
,
17
(
6
), pp.
1129
1138
.
4.
Tarui
,
T.
,
Maruyama
,
N.
,
Takahashi
,
J.
,
Nishida
,
S.
, and
Tashiro
,
H.
,
2005
, “
Microstructure Control and Strengthening of High-Carbon Steel Wires
,”
Report No. 91
, pp.
56
61
.http://www.nssmc.com/en/tech/report/nsc/pdf/n9112.pdf
5.
International
,
A.
,
2012
, “
Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete
,”
ASTM Standard A416/A416M
.
6.
Marder
,
A. R.
, and
Bramfitt
,
B. L.
,
1976
, “
The Effect of Morphology on the Strength of Pearlite
,”
Metall. Trans. A
,
7
(
3
), pp.
365
372
.
7.
Porter
,
D. A.
,
Easterling
,
K. E.
, and
Smith
,
G. D. W.
,
1978
, “
Dynamic Studies of the Tensile Deformation and Fracture of Pearlite
,”
Acta Metall.
,
26
(
9
), pp.
1405
1422
.
8.
Kramer
,
J.
,
Pound
,
G.
, and
Mehl
,
R.
,
1958
, “
The Free Energy of Formation and the Interfacial Enthalpy in Pearlite
,”
Acta Metall.
,
6
(
12
), pp.
763
771
.
9.
Campbell
,
P. C.
,
Hawbolt
,
E. B.
, and
Brimacombe
,
J. K.
,
1991
, “
Microstructural Engineering Applied to the Controlled Cooling of Steel Wire Rod: Part I. Experimental Design and Heat Transfer
,”
Metall. Trans. A
,
22
(
11
), pp.
2769
2778
.
10.
Campbell
,
P. C.
,
Hawbolt
,
E. B.
, and
Brimacombe
,
J. K.
,
1991
, “
Microstructural Engineering Applied to the Controlled Cooling of Steel Wire Rod: Part II. Microstructural Evolution and Mechanical Properties Correlations
,”
Metall. Trans. A
,
22
(
11
), pp.
2779
2790
.
11.
Campbell
,
P. C.
,
Hawbolt
,
E. B.
, and
Brimacombe
,
J. K.
,
1991
, “
Microstructural Engineering Applied to the Controlled Cooling of Steel Wire Rod: Part III. Mathematical Model-Formulation and Predictions
,”
Metall. Trans. A
,
22
(
11
), pp.
2791
2805
.
12.
Nobari
,
A. H.
, and
Serajzadeh
,
S.
,
2011
, “
Modeling of Heat Transfer During Controlled Cooling in Hot Rod Rolling of Carbon Steels
,”
Appl. Therm. Eng.
,
31
(
4
), pp.
487
492
.
13.
Lenka
,
S.
,
Kundu
,
S.
,
Chandra
,
S.
, and
Singh
,
S. B.
,
2013
, “
Effect of Recalescence on Microstructure and Phase Transformation in High Carbon Steel
,”
Mater. Sci. Technol.
,
29
(
6
), pp.
715
725
.
14.
Agarwal
,
P. K.
, and
Brimacombe
,
J. K.
,
1981
, “
Mathematical Model of Heat Flow and Austenite-Pearlite Transformation in Eutectoid Carbon Steel Rods for Wire
,”
Metall. Trans. B
,
12
(
1
), pp.
121
133
.
15.
Marder
,
A. R.
, and
Bramfitt
,
B. L.
,
1975
, “
Effect of Continuous Cooling on the Morphology and Kinetics of Pearlite
,”
Metall. Trans. A
,
6
(
11
), pp.
2009
2014
.
16.
Bhadeshia
,
H. K. D. H.
,
2008
, “
Mathematical Models in Materials Science
,”
Mater. Sci. Technol.
,
24
(
2
), pp.
128
136
.
17.
Ishikawa
,
N.
,
Parks
,
D. M.
,
Socrate
,
S.
, and
Kurihara
,
M.
,
2000
, “
Micromechanical Modeling of Ferrite-Pearlite Steels Using Finite Element Unit Cell Models
,”
ISIJ Int.
,
40
(
11
), pp.
1170
1179
.
18.
Kazeminezhad
,
M.
, and
Karimi Taheri
,
A.
,
2003
, “
The Effect of Controlled Cooling After Hot Rolling on the Mechanical Properties of a Commercial High Carbon Steel Wire Rod
,”
Mater. Des.
,
24
(
6
), pp.
415
421
.
19.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
1st ed.
,
Taylor & Francis
, Boca Raton, FL.
20.
Linnert
,
G.
, and
Society
,
A. W.
,
1967
,
Welding Metallurgy: Fundamentals
, Vol.
1
,
1st ed.
,
American Welding Society, Miami, FL
.
21.
Lindemann
,
A.
, and
Schmidt
,
J.
,
2005
, “
ACMOD-2D—A Heat Transfer Model for the Simulation of the Cooling of Wire Rod
,”
J. Mater. Process. Technol.
,
169
(
3
), pp.
466
475
.
22.
Poirier
,
D. R.
, and
Geiger
,
G. H.
,
2013
,
Transport Phenomena in Materials Processing
,
2nd ed.
Wiley
,
Hoboken, NJ
.
23.
Lindemann
,
A.
,
Schmidt
,
J.
, and
Boye
,
H.
,
2002
, “
Numerical Simulation and Infrared-Thermographic Measurement of the Cooling of Wire Rod
,”
Heat Transfer
,
4
, pp.
735
740
.
24.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
.
25.
Bhadeshia
,
H. K. D. H.
, and
Honeycombe
,
S. R.
,
2006
,
Steels, Microstructure and Properties
,
3rd ed.
,
Elsevier Ltd.
,
Oxford, UK
.
26.
Johnson
,
W. A.
, and
Mehl
,
R. F.
,
1939
, “
Reaction Kinetics in Processes of Nucleation and Growth
,”
Trans. AIME
,
135
(
8
), pp.
396
415
.
27.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change. I. General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
1112
.
28.
Avrami
,
M.
,
1941
, “
Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III
,”
J. Chem. Phys.
,
9
(
2
), pp.
177
184
.
29.
Cahn
,
J. W.
,
1956
, “
Transformation Kinetics During Continuous Cooling
,”
Acta Metall.
,
4
(
6
), pp.
572
575
.
30.
Donnay
,
B.
,
Herman
,
J. C.
,
Leroy
,
V.
,
Lotter
,
U.
,
Grossterlinden
,
R.
, and
Pircher
,
H.
,
1996
, “
Microstructure Evolution of C-Mn Steels in the Hot-Deformation Process: The Stripcam Model
,”
2nd International Conference on Modeling of Metal Rolling Processes
, pp.
23
35
.
31.
Jena
,
A. K.
, and
Chaturvedi
,
M. C.
,
1992
,
Phase Transformations in Materials
,
1st ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
32.
Scheil
,
E.
,
1935
, “
Anlaufzeit der austenitumwandlung
,”
Arch. Eisenhuettenwes.
,
8
(
12
), pp.
565
567
.
33.
Todinov
,
M. T.
,
1998
, “
Alternative Approach to the Problem of Additivity
,”
Metall. Mater. Trans. B
,
29
(
1
), pp.
269
273
.
34.
Barin
,
I.
, and
Knacke
,
O.
,
1973
,
Thermochemical Properties of Inorganic Substances
,
1st ed.
,
Springer-Verlag
,
Berlin
.
35.
Darken
,
L. S.
, and
Gurry
,
R. W.
,
1953
,
Physical Chemistry of Metals
,
1st ed.
,
McGraw-Hill
,
New York
.
36.
Leslie
,
W. C.
,
1981
,
The Physical Metallurgy of Steels
,
1st ed.
,
Hemisphere
,
London
.
37.
Pickering
,
F. B.
,
1978
,
Physical Metallurgy and the Design of Steels
,
1st ed.
,
Applied Science Publishers
,
London
.
38.
Gorni
,
A. A.
,
2004
,
Steel Forming and Heat Treating
,
Sao Vicente SP, Brazil
.
You do not currently have access to this content.