A novel thermophysical property estimation method is proposed, which incorporates both calibration and rescaling principles for estimating both unknown thermal diffusivity and thermal conductivity of materials. In this process, temperature and heat flux calibration equations are developed, which account for temperature-dependent thermophysical property combinations. This approach utilizes a single in-depth temperature measurement and a known set of boundary conditions. To acquire both thermal diffusivity and thermal conductivity, two distinct stages are proposed for extracting these properties. The first stage uses a temperature calibration equation for estimating the unknown thermal diffusivity. This process determines the thermal diffusivity by minimizing the residual of the temperature calibration equation with respect to the thermal diffusivity. The second stage uses the estimated thermal diffusivity and a heat flux calibration equation for estimating the unknown thermal conductivity. This stage produces the desired thermal conductivity by minimizing the residual of the heat flux calibration equation with respect to the thermal conductivity. Results verify that the proposed estimation process works well even in the presence of significant measurement noise for the chosen two representative materials. The relative error between the exact properties and the estimated values is shown to be small. For both test materials (stainless steel 304 and a representative carbon composite), the maximum relative prediction error is approximately 2–3%. Finally, as an added benefit, this method does not require explicit knowledge of the slab thickness or sensor position which further reduces systematic errors.

References

References
1.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.
2.
Clark
,
L. M.
, III
, and
Taylor
,
R. E.
,
1975
, “
Radiation Loss in the Flash Method for Thermal Diffusivity
,”
J. Appl. Phys.
,
46
(
2
), pp.
714
719
.
3.
James
,
H. M.
,
1980
, “
Some Extension of the Flash Method of Measuring Thermal Diffusivity
,”
J. Appl. Phys.
,
51
(
9
), pp.
4666
4672
.
4.
Baba
,
T.
, and
Ono
,
A.
,
2001
, “
Improvement of the Laser Flash Method to Reduce Uncertainty in Thermal Diffusivity Measurements
,”
Meas. Sci. Technol.
,
21
(12), pp.
2046
2057
.
5.
Kavianipour
,
A.
, and
Beck
,
J. V.
,
1977
, “
Thermal Property Estimation Utilizing the Laplace Transformation With Application to Asphaltic Pavement
,”
Int. J. Heat Mass Transfer
,
20
(
3
), pp.
259
267
.
6.
Sawaf
,
B.
, and
Ozisik
,
M. N.
,
1995
, “
An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic Medium
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3005
3010
.
7.
Huang
,
C. H.
, and
Yan
,
J. Y.
,
1995
, “
An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3433
3441
.
8.
Battaglia
,
J. L.
,
Schick
,
V.
, and
Rossignol
,
C.
,
2012
, “
Global Estimation of Thermal Parameters From a Picoseconds Thermoreflectometry Experiment
,”
Int. J. Therm. Sci.
,
57
, pp.
17
24
.
9.
Garcia
,
S.
, and
Scott
,
E. P.
,
1998
, “
Use of Genetic Algorithms in Thermal Property Estimation: Part 1—Experimental Design Optimization
,”
Numer. Heat Transfer, Part A
,
33
(
2
), pp.
135
147
.
10.
Garcia
,
S.
,
Guynn
,
J.
, and
Scott
,
E. P.
,
1998
, “
Use of Genetic Algorithms in Thermal Property Estimation: Part 2—Simultaneous Estimation of Thermal Properties
,”
Numer. Heat Transfer, Part A
,
33
(
2
), pp.
149
168
.
11.
Loehle
,
S.
,
Battaglia
,
J. L.
,
Batsale
,
J. C.
,
Bourserau
,
F.
,
Conte
,
D.
,
Jullien
,
P.
,
Ootegem
,
B. V.
,
Couzi
,
J.
, and
Lasserre
,
J. P.
,
2006
, “
Estimation of High Heat Flux in Supersonic Plasma Flows
,”
IEEE
,
4
, pp.
5336
5373
.
12.
Loehle
,
S.
,
Battaglia
,
J. L.
,
Jullien
,
P.
,
Ootegem
,
B. V.
,
Couzi
,
J.
, and
Lasserre
,
J. P.
,
2008
, “
Improvement of High Heat Flux Measurement Using a Null Point Calorimeter
,”
AIAA J. Spacecr. Rocket
,
23
(
1
), pp.
76
81
.
13.
Gardarein
,
J. L.
,
Battaglia
,
J. L.
, and
Loehle
,
S.
,
2009
, “
Heat Flux Sensor Calibration Using Nonintegral System Identification: Theory, Experiment and Error Analysis
,”
Rev. Sci. Instrum.
,
80
(
2
), p.
025103
.
14.
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2013
, “
A New Surface Heat Flux Calibration Method for Thin-Film Resistive Temperature Gauges and Co-Axial Thermocouples
,”
Shock Waves
,
23
(
2
), pp.
177
188
.
15.
Frankel
,
J. I.
,
Keyhani
,
M.
, and
Elkins
,
B. S.
,
2013
, “
Surface Heat Flux Prediction Through Physics-Based Calibration—Part 1: Theory
,”
AIAA J. Thermophys. Heat Transfer
,
27
(
2
), pp.
189
205
.
16.
Elkins
,
B. S.
,
Keyhani
,
M.
, and
Frankel
,
J. I.
,
2013
, “
Surface Heat Flux Prediction Through Physics-Based Calibration—Part 2: Experimental Verification
,”
AIAA J. Thermophys. Heat Transfer
,
27
(
2
), pp.
206
216
.
17.
Chen
,
Y. Y.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2014
, “
A New Nonlinear Surface Heat Flux Calibration Method Based on Kirchhoff Transformation and Rescaling Principles
,”
Inverse Prob. Sci. Eng.
,
22
(
8
), pp.
1394
1421
.
18.
Ozisik
,
M. N.
,
1980
,
Heat Conduction
,
Wiley
,
Hoboken, NJ
.
19.
Frankel
,
J. I.
,
Allison
,
S.
, and
Beshears
,
D. L.
,
2012
, “
Design of Phosphor Thermometry System for Transient High Heat Flux Surface Thermometry
,”
58th International Instrumentation Symposium
, San Diego, CA, June 4–8.
You do not currently have access to this content.