This work is a contribution to understand the thermal properties of Illite with ecological additives granular presented by cork or fiber by wool in order to use those composites in building construction, the composites are air dried. Knowing that the clay composites were studied before, a series of experimental studies confirmed by complete theoretical models were conducted using different methods such as the asymmetrical hot plate in transient, steady-state regime, and flash methods in order to determine the thermal properties of the composite clay with ecological additives. Also, an analysis of sensibility of thermal properties was studied. For this purpose, a thermal characterization using hot plate and flash methods confirmed by complete theoretical models was studied. Then an analysis of the physicochemical characterization of clay was done to determine its characteristics. Finally, a study of depth heat flow diffusion was conducted to see the effect of additives on penetrating exterior heat flow inside house.

References

References
1.
Jannot
,
Y.
,
Felix
,
V.
, and
Degiovanni
,
A.
,
2010
, “
A Centered Hot Plate Method for Measurement of Thermal Properties of Thin Insulating Materials
,”
Meas. Sci. Technol.
,
21
(
3
), p.
035106
.
2.
Bouchair
,
A.
,
2008
, “
Steady State Theoretical Model of Fired Clay Hollow Bricks for Enhanced External Wall Thermal Insulation
,”
Build. Environ.
,
43
(
10
), pp.
1603
1618
.
3.
Yves
,
J.
,
2011
, “
Theorie et pratique de la Metrologie thermique
,” Laboratoire d'Energétique et de Mécanique Théorique et Appliquée (LEMTA).
4.
Lin
,
W.
,
Fulton
,
P. M.
,
Harris
,
R. N.
,
Tadai
,
O.
,
Matsubayashi
,
O.
,
Tanikawa
,
W.
, and
Kinoshita
,
M.
,
2014
, “
Thermal Conductivities, Thermal Diffusivities, and Volumetric Heat Capacities of Core Samples Obtained From the Japan Trench Fast Drilling Project (JFAST)
,”
Earth, Planets Space
,
66
(
1
), p.
48
.
5.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.
6.
Degiovanni
,
A.
,
Laurent
,
M.
, and
Prost
,
R.
,
1979
, “
Automatic Measurement of Thermal Diffusivity
,”
Rev. Phys. Appl.
,
14
(
11
), pp.
927
932
.
7.
Degiovanni
,
A.
,
Batsale
,
J. C.
, and
Maillet
,
D.
,
1996
, “
Measurement of Longitudinal Thermal Diffusivity of Anisotropic Material
,”
Rev. Gén. Therm.
,
35
(
410
), pp.
141
147
.
8.
Wienner
,
O.
,
Lamellare
,
D.
, and
Wiener
,
O.
,
1912
, “
Lamellare Doppelbrechung
,”
Phys. Z.
,
5
, pp.
332
338
.
9.
Poulaert
,
B.
,
1987
, “
Le matériau polymere de l'isolant au conducteur thermique
,” Université catholique de Louvain-Faculté des sciences appliquées laboratoire physico-chimique et de physique des matériaux-Laboratoire des hauts polymères.
10.
Maxwell
,
D. C.
,
1954
,
A Treatise of Electricity and Magnetism
,
3rd ed.
, Vol.
I and II
,
Dover
,
New York
.
11.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1969
, “
Thermal Conductivity of Heterogeneous Systems
,”
Ind. Eng. Chem.
,
1
(
3
), pp.
187
191
.
12.
Woodside
,
W.
, and
Messmer
,
J. H.
,
1961
, “
Thermal Conductivity of Porous Media. I. Unconsolidated Sands
,”
J. Appl. Phys.
,
32
(
9
), p.
1688
.
13.
Asdrubali
,
F.
,
Schiavoni
,
S.
, and
Horoshenkov
,
K.
,
2012
, “
A Review of Sustainable Materials for Acoustic Applications
,”
Build. Acoust.
,
19
(
4
), pp.
283
312
.
14.
Sutcu
,
M.
,
del Coz Díaz
,
J. J.
,
Rabanal
,
F. P. A.
,
Gencel
,
O.
, and
Akkurt
,
S.
,
2014
, “
Thermal Performance Optimization of Hollow Clay Bricks Made up of Paper Waste
,”
Energy Build.
,
75
, pp.
96
108
.
15.
Chahwane
,
L.
,
2011
, “
Valorisation de l'inertie thermique pour la performance énergetique des bâtiments
,” Grenoble, France.
16.
Zach
,
J.
,
Korjenicb
,
A.
,
Petráneka
,
V.
,
Hroudováa
,
J.
, and
Bednarb
,
T.
,
2012
, “
Performance Evaluation and Research of Alternative Thermal Insulations Based on Sheep Wool
,”
Energy Build.
,
49
, pp.
246
253
.
17.
Khabbazi
,
A.
,
Garoum
,
M.
, and
Omar
,
T.
,
2005
, “
Experimental Study of Thermal and Mechanical Properties of a New Insulating Material Based on Cork and Cement Mortar
,”
AMSE J. Adv. Model Simul.
,
74
(
7
), p.
73
.
18.
Bussler
,
W.
, “
Cooke, G. B: Cork and the Cork Tree (Kork und Korkeiche). Pergamon Press, Oxford-London-New York-Paris, 1961, 121 S. Abb. (Band 4 der Reihe: International Series of Monographs on pure and applied Biology, Division: Botany) Gzl.: 50 s. 30,—DM. Z Für Pflanzenernähr Düng Bodenkd, 95; 1961, pp. 63–63
,”
Z. Für Pflanzenernähr. Düng. Bodenkd.
,
95
(
1
), p. 63.
19.
Mounir
,
S.
,
Maaloufa
,
Y.
,
Cherki
,
A. B.
, and
Khabbazi
,
A.
,
2014
, “
Thermal Properties of the Composite Material Clay/Granular Cork
,”
Constr. Build. Mater.
,
70
, pp.
183
190
.
20.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.
21.
Jannot
,
Y.
,
Remy
,
B.
, and
Degiovanni
,
A.
,
2010
, “
Measurement of Thermal Conductivity and Thermal Resistance With a Tiny Hot Plate
,”
High Temp. High Press.
,
39
(
1
), pp.
11
31
.
22.
Bal
,
H.
,
Jannot
,
Y.
,
Quenette
,
N.
,
Chenu
,
A.
, and
Gaye
,
S.
,
2012
, “
Water Content Dependence of the Porosity, Density and Thermal Capacity of Laterite Based Bricks With Millet Waste Additive
,”
Constr. Build. Mater.
,
31
, pp.
144
150
.
23.
Cherki
,
A.
,
Khabbazi
,
A.
,
Remy
,
B.
, and
Baillis
,
D.
,
2013
, “
Granular Cork Content Dependence of Thermal Diffusivity, Thermal Conductivity and Heat Capacity of the Composite Material/Granular Cork Bound With Plaster
,”
Energy Procedia
,
42
, pp.
83
92
.
You do not currently have access to this content.