A methodology has been established aiming to design a lightweight thermal protection system (TPS), using advanced lightweight ablative materials developed at the NASA Ames Research Center. An explicit finite-difference scheme is presented for the analysis of one-dimensional transient heat transfer in a multilayer TPS. This problem is solved in two steps, in the first step, best candidate materials are selected for TPS. The selection of materials is based mainly on their thermal properties. In the second step, the geometrical dimensions are determined by using an explicit finite-difference scheme for different combinations of the selected materials, and these dimensions are optimized for the design of lightweight TPS. The best combination of material employs silicone impregnated reusable ceramic ablator (SIRCA), Saffil, and glass-wool for the first, second, and third layer, respectively.

References

References
1.
Anderson
,
J. D.
,
2000
,
Hypersonic and High Temperature Gas Dynamics
,
AIAA
,
Reston, VA
.
2.
Mahulikar
,
S. P.
,
Khurana
,
S.
,
Dungarwal
,
R.
,
Shevakari
,
S. G.
,
Subramanian
,
J.
, and
Gujarathi
,
A. V.
,
2008
, “
Transient Aero-Thermal Mapping of Passive Thermal Protection System for Nose-Cap of Reusable Hypersonic Vehicle
,”
J. Astronaut. Sci.
,
56
(
4
), pp.
593
619
.
3.
Xie
,
G.
,
Qi
,
W.
,
Zhang
,
W.
,
Sunden
,
B.
, and
Lorenzini
,
G.
,
2013
, “
Optimization Design and Analysis Of Multilayer Lightweight Thermal Protection Structures Under Aerodynamic Heating Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011011
.
4.
Scatteia
,
L.
,
Riccio
,
A.
,
Rufolo
,
G.
,
De Filippis
,
F.
,
Del Vecchio
,
A.
, and
Marino
,
G.
, and SHS, P.-U.,
2005
, “
Ultra High Temperature Ceramic Materials for Sharp Hot Structures
,”
Am. Inst. Aeronaut. Astronaut.
,
3
(
266
), pp.
1
16
.
5.
Borrelli
,
R.
,
Riccio
,
A.
,
Tescione
,
D.
,
Gardi
,
R.
, and
Marino
,
G.
,
2009
, “
Thermo-Structural Behaviour of an UHTC Made Nose Cap of a Reentry Vehicle
,”
Acta Astronaut.
,
65
(
3
), pp.
442
456
.
6.
Leleu
,
F.
,
Watillon
,
P.
,
Moulin
,
J.
,
Lacombe
,
A.
, and
Soyris
,
P.
,
2005
, “
The Thermo-Mechanical Architecture and TPS Configuration of the Pre-X Vehicle
,”
Acta Astronaut.
,
56
(
4
), pp.
453
464
.
7.
Chamberlain
,
A.
,
Fahrenholtz
,
W.
,
Hilmas
,
G.
, and
Ellerby
,
D.
,
2005
, “
Oxidation of ZrB 2-SiC Ceramics Under Atmospheric and Reentry Conditions
,”
Refract. Appl. Trans.
,
1
(
2
), pp.
1
7
.
8.
Levine
,
S. R.
,
Opila
,
E. J.
,
Halbig
,
M. C.
,
Kiser
,
J. D.
,
Singh
,
M.
, and
Salem
,
J. A.
,
2002
, “
Evaluation of Ultra-High Temperature Ceramics Foraeropropulsion Use
,”
J. Eur. Ceram. Soc.
,
22
(
14
), pp.
2757
2767
.
9.
Opeka
,
M. M.
,
Talmy
,
I. G.
,
Wuchina
,
E. J.
,
Zaykoski
,
J. A.
, and
Causey
,
S. J.
,
1999
, “
Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds
,”
J. Eur. Ceram. Soc.
,
19
(
13
), pp.
2405
2414
.
10.
Boyd
,
I. D.
, and
Padilla
,
J. F.
,
2003
, “
Simulation of Sharp Leading Edge Aerothermodynamics
,”
AIAA
Paper No. 7062.
11.
Lewis
,
M. J.
,
1999
, “
Sharp Leading Edge Hypersonic Vehicles in the Air and Beyond
,”
SAE
Technical Paper No. 1999-01-5514.
12.
Nonweiler
,
T. R.
,
1999
, “
Heat Shield Design for Re-Entry and Launch. The Use of Conduction-Assisted Radiation on Sharp-Edged Wings
,”
Philos. Trans. R. Soc. London A
,
357
(
1759
), pp.
2197
2225
.
13.
Book
,
A. S.
,
2008
,
Aviation Week & Space Technology
,
McGraw-Hill
,
Arlington, TX
.
14.
Morris
,
W.
,
White
,
N.
, and
Ebeling
,
C.
, “
Analysis of Shuttle Orbiter Reliability and Maintainability Data for Conceptual Studies
,”
AIAA 1996 Space Programs and Technologies Conference
,
AIAA
Paper No. 96-4245.
15.
Weiland
,
C.
,
Longo
,
J.
,
Gülhan
,
A.
, and
Decker
,
K.
,
2004
, “
Aerothermodynamics for Reusable Launch Systems
,”
Aerosp. Sci. Technol.
,
8
(
2
), pp.
101
110
.
16.
Zhu
,
H.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
,
Venkataraman
,
S.
, and
Blosser
,
M.
,
2004
, “
Optimization of Functionally Graded Metallic Foam Insulation Under Transient Heat Transfer Conditions
,”
Struct. Multidiscip. Optim.
,
28
(
5
), pp.
349
355
.
17.
Ferraiuolo
,
M.
, and
Manca
,
O.
,
2012
, “
Heat Transfer in a Multi-Layered Thermal Protection System Under Aerodynamic Heating
,”
Int. J. Therm. Sci.
,
53
, pp.
56
70
.
18.
Palmer
,
G.
,
Henline
,
W.
,
Olynick
,
D.
, and
Milos
,
F.
,
1997
, “
High-Fidelity Thermal Protection System Sizing of Reusable Launch Vehicle
,”
J. Spacecr. Rockets
,
34
(
5
), pp.
577
583
.
19.
Dinkelmann
,
M.
,
Wächter
,
M.
, and
Sachs
,
G.
,
2000
, “
Modelling and Simulation of Unsteady Heat Transfer for Aerospacecraft Trajectory Optimization
,”
Math. Comput. Simul.
,
53
(
4
), pp.
389
394
.
20.
Murray
,
A.
, and
Russell
,
G.
,
2002
, “
Coupled Aeroheating/Ablation Analysis for Missile Configurations
,”
J. Spacecr. Rockets
,
39
(
4
), pp.
501
508
.
21.
Gori
,
F.
,
Corasaniti
,
S.
,
Worek
,
W.
, and
Minkowycz
,
W.
,
2012
, “
Theoretical Prediction of Thermal Conductivity for Thermal Protection Systems
,”
Appl. Therm. Eng.
,
49
, pp.
124
130
.
22.
Martinez
,
O.
,
Sankar
,
B.
,
Haftka
,
R.
, and
Blosser
,
M. L.
,
2012
, “
Two-Dimensional Orthotropic Plate Analysis for an Integral Thermal Protection System
,”
AIAA J.
,
50
(
2
), pp.
387
398
.
23.
Martinez
,
O. A.
,
Sharma
,
A.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
, and
Blosser
,
M. L.
,
2010
, “
Thermal Force and Moment Determination of an Integrated Thermal Protection System
,”
AIAA J.
,
48
(
1
), pp.
119
128
.
24.
Johnson
,
T. F.
,
Waters
,
W. A.
,
Singer
,
T. N.
, and
Haftka
,
R. T.
,
2004
, “
Thermal–Structural Optimization of Integrated Cryogenic Propellant Tank Concepts for a Reusable Launch Vehicle
,”
AIAA
Paper No. 1931.
25.
Gogu
,
C.
,
Bapanapalli
,
S. K.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2009
, “
Comparison of Materials for an Integrated Thermal Protection System for Spacecraft Reentry
,”
J. Spacecr. Rockets
,
46
(
3
), pp.
501
513
.
26.
Savino
,
R.
,
Fumo
,
M. D. S.
,
Paterna
,
D.
, and
Serpico
,
M.
,
2005
, “
Aerothermodynamic Study of UHTC-Based Thermal Protection Systems
,”
Aerosp. Sci. Technol.
,
9
(
2
), pp.
151
160
.
27.
2005, CES Edupack,
Granta Design Limited, Butterworth-Heinemann
,
Cambridge, UK
.
28.
Holman
,
J.
,
1986
,
Heat Transfer
, 1986,
McGraw-Hill
,
Singapore
.
29.
Yunus
,
A. C.
,
2003
,
Heat Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
30.
Jaluria
,
Y.
, and
Torrance
,
K.
,
2003
,
Computational Heat Transfer
,
Taylor and Francis
,
New York
.
31.
Tran
,
H.
,
Johnson
,
C.
,
Rasky
,
D.
,
Hui
,
F.
, and
Hsu
,
M.-T.
,
1997
, “
Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions
,” NASA Technical Memorandum No. 110440.
You do not currently have access to this content.