The numerical simulation of turbulent offset jet flow has been carried out using k–ω shear stress transport (SST) model. The simulations have been done for the offset jet flow in the quiescent medium and also in the presence of an external stream. The effect of freestream velocity on the flow and heat transfer characteristics of turbulent offset jet has been reported. The offset ratio and Reynolds number of flow considered are 5.7 and 16,000, respectively. The presence of coflow stream has been found to reduce the entrainment of surrounding fluid into the jet which in turn reduces the heat transfer from the jet to the surrounding medium. The effect of freestream velocity on the important parameters like decay of the local maximum streamwise velocity, jet spread, reattachment length, velocity logarithmic profile, velocity defect law profile, decay of the local maximum streamwise temperature, variation of wall temperature, temperature similarity profile, and Nusselt number distribution has been discussed.

References

References
1.
Gaskin
,
S.
, and
Wood
,
I. R.
,
2001
, “
The Axisymmetric and the Plane Jet in a Coflow
,”
J. Hydraul. Res.
,
39
(
5
), pp.
451
458
.
2.
Antoine
,
Y.
,
Lemoine
,
F.
, and
Lebouche
,
M.
,
2001
, “
Turbulent Transport of a Passive Scalar in a Round Jet Discharging Into a Co-Flowing Stream
,”
Eur. J. Mech. B/Fluids
,
20
(
2
), pp.
275
301
.
3.
Habli
,
S.
,
Said
,
N. M.
,
Mahmoud
,
H.
,
Mhiri
,
H.
,
Palec
,
G. L.
, and
Bournot
,
P.
,
2008
, “
Influence of a Coflowing Ambient Stream on a Turbulent Axisymmetric Buoyant Jet
,”
ASME J. Heat Transfer
,
130
(
2
), p.
022201
.
4.
Antonia
,
R. A.
, and
Bilger
,
R. W.
,
1973
, “
An Experimental Investigation of an Axisymmetric Jet in a Coflowing Air Stream
,”
J. Fluid Mech.
,
61
(
4
), pp.
805
822
.
5.
Bradbury
,
L. J. S.
, and
Riley
,
J.
,
1967
, “
The Spread of a Turbulent Plane Jet Issuing Into a Parallel Moving Airstream
,”
J. Fluid Mech.
,
27
(
2
), pp.
381
394
.
6.
Maczynski
,
J. F. J.
,
1962
, “
A Round Jet in an Ambient Co-Axial Stream
,”
J. Fluid Mech.
,
13
(
4
), pp.
597
608
.
7.
Habli
,
S.
,
Saïd
,
N. M.
,
Palec
,
G. L.
, and
Bournot
,
H.
,
2014
, “
Numerical Study of a Turbulent Plane Jet in a Coflow Environment
,”
Comput. Fluids
,
29
, pp.
20
28
.
8.
Deo
,
R. C.
,
Nathan
,
G. J.
, and
Mi
,
J.
,
2007
, “
Comparison of Turbulent Jets Issuing From Rectangular Nozzles With and Without Sidewalls
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
596
606
.
9.
Kruka
,
V.
, and
Eskinazi
,
S.
,
1964
, “
The Walljet in a Moving Stream
,”
J. Fluid Mech.
,
20
(
4
), pp.
555
579
.
10.
Nickels
,
T. B.
, and
Perry
,
A. E.
,
1996
, “
An Experimental and Theoretical Study of the Turbulent Coflowing Jet
,”
J. Fluid Mech.
,
309
, pp.
157
182
.
11.
Irwin
,
H. P. A. H.
,
1973
, “
Measurements in a Self-Preserving Plane Wall Jet in a Positive Pressure Gradient
,”
J. Fluid Mech.
,
61
(
1
), pp.
33
63
.
12.
Campbell
,
J. F.
,
1975
, “
Turbulent Wall Jet in a Coflowing Stream
,” NASA Technical Note Report No. NASA TN D-8025.
13.
Escudier
,
M. P.
, and
Nicoll
,
W. B.
,
1966
, “
The Entrainment Function in Turbulent Boundary-Layer and Wall-Jet Calculations
,”
J. Fluid Mech.
,
25
(
2
), pp.
337
366
.
14.
Dakos
,
T.
,
Verriopoulos
,
C. A.
, and
Gibson
,
M. M.
,
1984
, “
Turbulent Flow With Heat Transfer in Plane and Curved Wall Jets
,”
J. Fluid Mech.
,
145
, pp.
339
360
.
15.
Hoch
,
J.
, and
Jiji
,
L. M.
,
1981
, “
Two-Dimensional Turbulent Offset Jet-Boundary Interaction
,”
ASME J. Fluid Eng.
,
103
(
1
), pp.
154
161
.
16.
Hoch
,
J.
, and
Jiji
,
L. M.
,
1981
, “
Theoretical and Experimental Temperature Distribution in Two-Dimensional Turbulent Jet-Boundary Interaction
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
331
335
.
17.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.
18.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing and Development
,” NASA Technical Memorandum Technical Report No. 110446, Ames Research Center.
19.
Hofmann
,
H. M.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Calculations of Steady and Pulsating Impinging Jets: An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer, Part B
,
51
(
6
), pp.
565
583
.
20.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
Am. Inst. Aeronaut. Astronaut. J.
,
26
(
11
), pp.
1299
1310
.
21.
Mentor
,
F. R.
,
1992
, “
Improved Two-Equation k–ω Turbulence Models for Aerodynamic Flows
,” NASA Technical Memorandum Technical Report No. 103975, Ames Research Center
.
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
Am. Inst. Aeronaut. Astronaut. J.
,
32
(
8
), pp.
1598
1605
.
23.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
.
24.
Biswas
,
G.
, and
Eswaran
,
V.
,
2002
,
Turbulent Flows: Fundamentals, Experiments and Modeling
(IIT Kanpur Series of Advanced Texts),
Narosa Publishing House
,
New Delhi, India
.
25.
van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer, Part A
,
7
, pp.
147
163
.
26.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
27.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1996
, “
An Introduction to Computational Fluid Dynamics
,”
The Finite Volume Method
,
Addison-Wesley Longman
,
London
.
28.
Nizou
,
P. Y.
, and
Tida
,
T.
,
1995
, “
Transferts de chaleur et de quantité de mouvement dans les jets pariétaux plans turbulents
,”
Int. J. Heat Mass Transfer
,
38
(
7
), pp.
1187
1200
.
29.
Wygnanski
,
I.
,
Katz
,
Y.
, and
Horev
,
E.
,
1992
, “
On the Applicability of Various Scaling Laws to the Turbulent Wall Jet
,”
J. Fluid Mech.
,
234
, pp.
669
690
.
You do not currently have access to this content.