Irradiated fuel subassembly (SA)/fuel pins, with significant decay heat are transported from reactor and stored in hot cells (HCs) before reprocessing. During transportation they are heavily shielded and no forced cooling is provided. The HCs are made of concrete structures, the outer surfaces of which are force cooled. During these processes, the fuel pin clad temperature and concrete temperatures are to be limited within specific safety limits. These temperatures are function of the decay power and geometric details of surrounding structures. To predict these temperatures, three-dimensional conjugate conduction–convection–radiation heat transfer analysis has been carried out. For this purpose, the computational fluid dynamics (CFD) code STAR-CD has been utilized, wherein individual fuel pins, steel cans, hexagonal wrapper, lead shielding blocks, and concrete structures have been considered in detail. Based on parametric studies pertaining to fuel pin transportation, it is established that for a decay power of 150 W, natural convection is adequate with maximum clad temperature of 686 K. From the studies related to storage in HCs, it is seen that nine fast breeder test reactor (FBTR) SA can stored in hot cell-1 (HC-1), with a decay power of 31.3 W per SA, to respect the temperature limits. For 3 prototype fast breeder reactor (PFBR) cans and 2 FBTR cans stored in hot cell-3 (HC-3), a decay power of 12.5 W per FBTR can and 44 W per PFBR can, can be handled without exceeding temperature limits.

References

References
1.
Chetal
,
S. C.
,
Balasubramaniyan
,
V.
,
Chellapandi
,
P.
,
Mohanakrishnan
,
P.
,
Puthiyavinayagam
,
P.
,
Pillai
,
C. P.
,
Raghupathy
,
S.
,
Shanmugham
,
T. K.
, and
Sivathanu Pillai
,
C.
,
2006
, “
The Design of the Prototype Fast Breeder Reactor
,”
Nucl. Eng. Des.
,
236
(
7–8
), pp.
852
860
.10.1016/j.nucengdes.2005.09.025
2.
Srinivasan
,
G.
,
Suresh
Kumar
,
K. V
,
.
,
Rajendran
,
B.
, and
Ramalingam
,
P. V.
,
2006
, “
The Fast Breeder Test Reactor—Design and Operating Experiences
,”
Nucl. Eng. Des.
,
236
(
7–8
), pp.
796
811
.10.1016/j.nucengdes.2005.09.024
3.
Natesan
,
K.
,
Kasinathan
,
N.
,
Velusamy
,
K.
,
Selvaraj
,
P.
, and
Chellapandi
,
P.
,
2012
, “
Plant Dynamics Studies Towards Design of Plant Protection System for PFBR
,”
Nucl. Eng. Des.
,
250
, pp.
339
350
.10.1016/j.nucengdes.2012.05.009
4.
Code for Safety in Transport of Radioactive Materials
,
1986
, AERB Code No. SC/TR-1, Atomic Energy Regulatory Board, Mumbai, India.
5.
ASME
,
1992
,
ASME Boiler and Pressure Vessel Code, Section III, Division 2, Code for Concrete Reactor Vessels and Containments
,
American Society of Mechanical Engineering
,
New York
.
6.
Herranz
,
L. E.
,
Penalva
,
P.
, and
Feria
,
F.
,
2015
, “
CFD Analysis of a Cask for Spent Fuel Dry Storage: Model Fundamentals and Sensitivity Studies
,”
Ann. Nucl. Energy
,
76
, pp.
54
62
.10.1016/j.anucene.2014.09.032
7.
Heng
,
X.
,
Zuying
,
G.
, and
Zhiwei
,
Z.
,
2002
, “
A Numerical Investigation of Natural Convection Heat Transfer in Horizontal Spent-Fuel Storage Cask
,”
Nucl. Eng. Des.
,
213
(
1
), pp.
59
65
.10.1016/S0029-5493(01)00454-X
8.
Nishimura
,
M.
,
Shibazaki
,
H.
,
Fujii
,
S.
, and
Maekawa
,
I.
,
1996
, “
Natural Convection Heat Transfer in the Horizontal Dry Storage System for the LWR Spent Fuel Assemblies
,”
J. Nucl. Sci. Technol.
,
33
(11), pp.
821
828
.10.1080/18811248.1996.9732015
9.
Tseng
,
Y.-S.
,
Wang
,
J.-R.
,
Tsai
,
F. P.
,
Cheng
,
Y.-H.
, and
Shih
,
C.
,
2011
, “
Thermal Design Investigation of a New Tube-Type Dry-Storage System Through CFD Simulations
,”
Ann. Nucl. Energy
,
38
(
5
), pp.
1088
1097
.10.1016/j.anucene.2011.01.001
10.
Yoo
,
S. H.
,
No
,
H. C.
,
Min
Kim
,
H.
, and
Lee
,
E. H.
,
2010
, “
Full-Scope Simulation of a Dry Storage Cask Using Computational Fluid Dynamics
,”
Nucl. Eng. Des.
,
240
(
12
), pp.
4111
4122
.10.1016/j.nucengdes.2010.08.009
11.
Creer
,
J. M.
,
Michener
,
T. E.
,
McKinnon
,
M. A.
,
Tanner
,
J. E.
,
Gilbert
,
E. R.
, and
Goodman
,
R. L.
,
1987
, “
The TN-24P Spent Fuel Storage Cask: Testing and Analysis
,” Electric Power Research Institute, NP-5128.
12.
Hussain
,
A.
, and
Sait
,
H.
,
2012
, “
CFD Modeling of the Dry Spent Fuel Storage of a Pressurized Heavy Water Reactor
,”
Math. Theory Model.
,
2
(
10
), pp.
11
20
.
13.
Kim
,
H.
,
Kwon
,
O. J.
,
Kang
,
G.-U.
, and
Lee
,
D.-G.
,
2014
, “
Comparisons of Prediction Methods for Peak Cladding Temperature and Effective Thermal Conductivity in Spent Fuel Assemblies of Transportation/Storage Casks
,”
Ann. Nucl. Energy
,
71
, pp.
427
435
.10.1016/j.anucene.2014.04.004
14.
Manteufel
,
R. D.
, and
Todreas
,
N. E.
,
1991
, “
Heat Transfer in an Enclosed Rod Array
,” Ph.D. thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA.
15.
Wooton
,
R. O.
, and
Epstein
,
H. M.
,
1963
,
Heat Transfer From a Parallel-Rod Fuel Assembly in a Shipping Container
,
Battelle Memorial Institute
,
Columbus, OH
.
16.
Gomez
,
P. E. A.
, and
Greiner
,
M.
,
2005
, “
Simulation of Heat Transfer Within the Fuel Assembly/Backfill Gas Region of Transport Packages
,”
ASME
Paper No. PVP2005-71070. 10.1115/PVP2005-71070
17.
Kim
,
H. M.
,
No
,
H. C.
,
Bang
,
K. S.
,
Seo
,
K. S.
, and
Lee
,
S. H.
,
2014
, “
Development of Scaling Laws of Heat Removal and CFD Assessment in Concrete Cask Air Path
,”
Nucl. Eng. Des.
,
278
, pp.
7
16
.10.1016/j.nucengdes.2014.06.015
18.
Mohanakrishnan
,
P.
,
2008
, “
Development and Validation of a Fast Reactor Core Burnup Code—FARCOB
,”
Ann. Nucl. Energy
,
35
(
2
), pp.
158
166
.10.1016/j.anucene.2007.07.003
19.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
4th ed.
,
Wiley
,
Hoboken, NJ
.10.1002/9781118671627
20.
Holman
,
J. P.
,
2010
,
Heat Transfer
,
10th ed.
,
McGraw-Hill
,
New York
.
21.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
,
4th ed.
,
Taylor & Francis
,
Washington, DC
.
22.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Mathematical Models of Turbulence
,
Academic
,
Cambridge, UK
.
23.
CD adapco Group
,
2005
,
STAR-CD, Ver. 3.2
,
Computational Dynamics Limited
,
Melville, NY
.
24.
Patankar
,
S. V.
,
2004
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
25.
Ayachit
,
U.
,
2015
,
The ParaView Guide: A Parallel Visualization Application
,
Kitware
,
New York
.
You do not currently have access to this content.