The present work introduces an experimental study of horizontal shell and coil heat exchangers. Characteristics of the convective heat transfer in this type of heat exchangers and the friction factor for fully developed flow through their helically coiled tube (HCT) were investigated. The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid-operating conditions. Here, five heat exchangers of counterflow configuration were constructed with different HCT torsions (λ) and tested at different mass flow rates and inlet temperatures of both sides of the heat exchangers. In total, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of both sides of the heat exchangers and the overall heat transfer coefficient increase by decreasing coil torsion. At lower and higher HCT-side Reynolds number (Ret), the average increase in the HCT-side average Nusselt number (Nu¯t) is of 108.7% and 58.6%, respectively, when λ decreases from 0.1348 to 0.0442. While, at lower and higher shell-side Reynolds number (Resh), the average increase in the shell-side average Nusselt number (Nu¯sh) is of 173.9% and 69.5%, respectively, when λ decreases from 0.1348 to 0.0442. In addition, a slight increase of 6.4% is obtained in the HCT Fanning friction factor (fc) at lower Ret when λ decreases from 0.1348 to 0.0442, and this effect vanishes with increasing Ret. Furthermore, correlations for Nu¯t, Nu¯sh, and fc are obtained.

References

References
1.
Zhao
,
Z.
,
Wang
,
X.
,
Che
,
D.
, and
Cao
,
Z.
,
2011
, “
Numerical Studies on Flow and Heat Transfer in Membrane Helical-Coil Heat Exchanger and Membrane Serpentine-Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1189
1194
.10.1016/j.icheatmasstransfer.2011.06.014
2.
Pimenta
,
T. A.
, and
Campos
,
J. B. L. M.
,
2012
, “
Friction Losses of Newtonian and Non-Newtonian Fluids Flowing in Laminar Regime in a Helical Coil
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
194
204
.10.1016/j.expthermflusci.2011.09.013
3.
Kao
,
H. C.
,
1987
, “
Torsion Effect on Fully Developed Flow in a Helical Pipe
,”
J. Fluid Mech.
,
184
, pp.
335
356
.10.1017/S002211208700291X
4.
Liu
,
S.
, and
Masliyah
,
J. H.
,
1994
, “
Developing Convective Heat Transfer in Helical Pipes With Finite Pitch
,”
Int. J. Heat Fluid Flow
,
15
(
1
), pp.
66
74
.10.1016/0142-727X(94)90032-9
5.
Hüttl
,
T. J.
, and
Friedrich
,
R.
,
2001
, “
Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes
,”
Comput. Fluids
,
30
(
5
), pp.
591
605
.10.1016/S0045-7930(01)00008-1
6.
Gammack
,
D.
, and
Hydon
,
P. E.
,
2001
, “
Flow in Pipes With Non-Uniform Curvature and Torsion
,”
J. Fluid Mech.
,
433
, pp.
357
382
.10.1017/S0022112001003548
7.
Masud
,
M. A.
,
Rabiul Islam
,
Md.
,
Rasel Sheikh
,
Md.
, and
Mahmud Alam
,
Md.
,
2010
, “
Stable Solution Zone for Fluid Flow Through Curved Pipe With Circular Cross-Section
,”
J. Nav. Archit. Mar. Eng.
,
7
(
1
), pp.
19
26
.10.3329/jname.v7i1.3630
8.
Austin
,
L. R.
, and
Seader
,
J. D.
,
1973
, “
Fully Developed Viscous Flow in Coiled Circular Pipes
,”
AIChE J.
,
19
(
1
), pp.
85
94
.10.1002/aic.690190113
9.
Mishra
,
P.
, and
Gupta
,
N.
,
1979
, “
Momentum Transfer in Curved Pipes. 1-Newtonian Fluids
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
1
), pp.
130
137
.10.1021/i260069a017
10.
Prasad
,
B. V. S. S. S.
,
Das
,
D. H.
, and
Prabhakar
,
A. K.
,
1989
, “
Pressure Drop, Heat Transfer and performance of a Helical Coil Tubular Exchanger
,”
J. Heat Recovery Comb. Heat Power
,
9
(3), pp.
249
256
.10.1016/0890-4332(89)90008-2
11.
Ali
,
S.
, “
Pressure Drop Correlations for Flow Through Regular Helical Coil Tubes
,”
Fluid Dyn. Res.
,
28
(
4
), pp.
295
310
.10.1016/S0169-5983(00)00034-4
12.
Rogers
,
G. F. C.
, and
Mayhew
,
Y. R.
,
1964
, “
Heat Transfer and Pressure Loss in Helically Coiled Tubes With Turbulent Flow
,”
Int. Heat Mass Transfer
,
7
(
11
), pp.
1207
1216
.10.1016/0017-9310(64)90062-6
13.
Austen
,
D. S.
, and
Soliman
,
H. M.
,
1988
, “
Laminar Flow and Heat Transfer in Helically Coiled Tubes With Substantial Pitch
,”
Exp. Therm. Fluid Sci.
,
1
(
2
), pp.
183
194
.10.1016/0894-1777(88)90035-0
14.
Yang
,
G.
,
Dong
,
F.
, and
Ebadian
,
M. A.
,
1995
, “
Laminar Forced Convection in a Helicoidal Pipe With Finite Pitch
,”
Int. J. Heat Mass Transfer
,
38
(
5
), pp.
853
862
.10.1016/0017-9310(94)00199-6
15.
Yang
,
G.
, and
Ebadian
,
M. A.
,
1996
, “
Turbulent Forced Convection in a Helicoidal Pipe With Substantial Pitch
,”
Int. J. Heat Mass Transfer
,
39
(
10
), pp.
2015
2022
.10.1016/0017-9310(95)00303-7
16.
Cengiz
,
Y.
,
Yasar
,
B.
, and
Dursun
,
P.
,
1997
, “
Heat Transfer and Pressure Drops in a Heat Exchanger With a Helical Pipe Containing Inside Springs
,”
Energy Convers. Manage.
,
38
(
6
), pp.
619
624
.10.1016/S0196-8904(96)00040-4
17.
Rahul
,
S.
,
Gupta
,
S. K.
, and
Subbarao
,
P. M. V.
,
1997
, “
An Experimental Study for Estimating Heat Transfer Coefficient From Coiled Tube Surfaces in Cross-Flow of Air
,”
Third ISHMT-ASME Heat and Mass Transfer Conference and Fourth National Heat and Mass Transfer Conference
, IIT Kanpur, Dec. 31, pp.
381
385
.
18.
Prabhanjan
,
D. G.
,
Raghavan
,
G. S. V.
, and
Rennie
,
T. J.
,
2002
, “
Comparison of Heat Transfer Rates Between a Straight Tube Heat Exchanger and a Helically Coiled Heat Exchanger
,”
lnt. Commun. Heat Mass Transfer
,
29
(
2
), pp.
185
191
.10.1016/S0735-1933(02)00309-3
19.
Rennie
,
T. J.
, and
Raghavan
,
V. G. S.
,
2005
, “
Experimental Studies of a Double-Pipe Helical Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
919
924
.10.1016/j.expthermflusci.2005.02.001
20.
Rennie
,
T. J.
, and
Raghavan
,
G. S. V.
,
2006
, “
Numerical Studies of a Double-Pipe Helical Heat Exchanger
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1266
1273
.10.1016/j.applthermaleng.2005.10.030
21.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1997
, “
The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristic in Helical Pipes
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
467
473
.10.1115/1.2824120
22.
Bai
,
B.
,
Guo
,
L.
,
Feng
,
Z.
, and
Chen
,
X.
,
1999
, “
Turbulent Heat Transfer in a Horizontally Coiled Tube
,”
Heat Transfer-Asian Res.
,
28
(
5
), pp.
395
403
.10.1002/(SICI)1523-1496(1999)28:5<395::AID-HTJ5>3.0.CO;2-Y
23.
Salimpour
,
M. R.
,
2008
, “
Heat Transfer Characteristics of a Temperature-Dependent-Property Fluid in Shell and Coiled Tube Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
35
(
9
), pp.
1190
1195
.10.1016/j.icheatmasstransfer.2008.07.002
24.
Salimpour
,
M. R.
,
2009
, “
Heat Transfer Coefficients of Shell and Coiled Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
203
207
.10.1016/j.expthermflusci.2008.07.015
25.
Purandare
,
P. S.
,
Lele
,
M. M.
, and
Gupta
,
R.
,
2012
, “
Parametric Analysis of Helical Coil Heat Exchanger
,”
Int. J. Eng. Res. Technol.
,
1
(
8
), pp.
1
5
.
26.
Salem
,
M. R.
,
Elshazly
,
K. M.
,
Sakr
,
R. Y.
, and
Ali
,
R. K.
,
2014
, “
Experimental Investigation of Coil Curvature Effect on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011005
.10.1115/1.4028612
27.
Schmidt
,
E. F.
,
1967
, “
Heat Transfer and Pressure Loss in Spiral Tubes
,”
Chem. Ing. Tech.
,
39
(
13
), pp.
781
789
.10.1002/cite.330391302
28.
Ralph
,
R.
,
2001
,
Thermal Design of Electronic Equipment
(Electronics Handbook Series),
CRC Press
,
Boca Raton, FL
.
29.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.10.1002/9780470172605
30.
Daily
,
J. W.
, and
Harleman
,
D. R.
,
1966
,
Fluid Dynamics
,
Addison-Wesley
,
Don Mills, ON, Canada
.
31.
Nigam
,
K. D. P.
,
Agarwal
,
S.
, and
Srivastava
,
V. K.
,
2001
, “
Laminar Convection of Non-Newtonian Fluids in the Thermal Entrance Region of Coiled Circular Tubes
,”
Chem. Eng. J.
,
84
(3), pp.
223
237
.10.1016/S1385-8947(00)00376-4
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
33.
White
,
C. M.
,
1932
, “
Friction Factor and Its Relation to Heat Transfer
,”
Trans. Inst. Chem. Eng.
,
18
, pp.
66
86
.
You do not currently have access to this content.