An experimental investigation has been performed to determine the flow characteristics of an axisymmetric submerged water jet with superimposed periodically oscillating flow. The objective of the study is to quantify in detail the near field of a pulsating jet using the particle image velocimetry (PIV) technique. The amplitude and frequency of oscillations are varied separately and the effect of each parameter is determined for a range of Reynolds numbers (ReD = 1602, 2318, and 3600). The experimental results indicate that for a given Reynolds number and amplitude, with an increase in the frequency of pulsation, the vortex formation shifts toward the nozzle exit. The number of vortices also increases with an increase in the jet pulsation frequency. Broadening of the jet and shortening of the potential core length are also observed. This indicates that mixing with the surrounding fluid is higher with pulsating jet even at relatively low Reynolds numbers. It is observed that frequency up to a critical frequency helps increase entrainment of the surrounding fluid. An upper critical frequency beyond which pulsation does not affect the entrainment is also determined. These results should eventually lead to a better understanding of the physical phenomena responsible for enhanced heat transfer rates in the presence of pulsating jets.

References

References
1.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.10.1016/0017-9310(65)90054-2
2.
Narayanan
,
V.
,
Seyed-Yagoobi
,
J.
, and
Page
,
R. H.
,
2004
, “
An Experimental Study of Fluid Mechanics and Heat Transfer in an Impinging Slot Jet Flow
,”
Int. J. Heat Mass Transfer
,
47
(
8
), pp.
1827
1845
.10.1016/j.ijheatmasstransfer.2003.10.029
3.
Eren
,
H.
,
Yesilata
,
B.
, and
Celik
,
N.
,
2007
, “
Nonlinear Flow and Heat Transfer Dynamics of Impinging Jets Onto Slightly-Curved Surfaces
,”
Appl. Therm. Eng.
,
27
(
14
), pp.
2600
2608
.10.1016/j.applthermaleng.2007.01.022
4.
Yang
,
G.
,
Choi
,
M.
, and
Lee
,
J. S.
,
1999
, “
An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2199
2209
.10.1016/S0017-9310(98)00337-8
5.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
6.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
The Effect of Inclination on the Heat Transfer Between a Flat Surface and an Impinging Two-Dimensional Air Jet
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
156
163
.10.1016/S0142-727X(99)00080-6
7.
Phares
,
D. J.
,
Smedley
,
G. T.
, and
Flagan
,
R. C.
,
2000
, “
The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface
,”
J. Fluid Mech.
,
418
, pp.
351
375
.10.1017/S002211200000121X
8.
Hofmann
,
H. M.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Measurements on Steady State Heat Transfer and Flow Structure and New Correlations for Heat and Mass Transfer in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
19
), pp.
3957
3965
.10.1016/j.ijheatmasstransfer.2007.01.023
9.
Angioletti
,
M.
,
Di Tommaso
,
R. M.
,
Nino
,
E.
, and
Ruocco
,
G.
,
2003
, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1703
1713
.10.1016/S0017-9310(02)00479-9
10.
Cornaro
,
C.
,
Fleischer
,
A. S.
,
Rounds
,
M.
, and
Goldstein
,
R. J.
,
2001
, “
Jet Impingement Cooling of a Convex Semi-Cylindrical Surface
,”
Int. J. Therm. Sci.
,
40
(
10
), pp.
890
898
.10.1016/S1290-0729(01)01275-3
11.
Elison
,
B.
, and
Webb
,
B. W.
,
1994
, “
Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes
,”
Int. J. Heat Mass Transfer
,
37
(
8
), pp.
1207
1216
.10.1016/0017-9310(94)90206-2
12.
Liu
,
X.
,
Lienhard
,
J.
, and
Lombara
,
J.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid
,”
ASME J. Heat Transfer
,
113
(3), pp.
571
582
.10.1115/1.2910604
13.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
886
895
.10.1115/1.2911463
14.
Xu
,
P.
,
Yu
,
B.
,
Qiu
,
S.
,
Poh
,
H. J.
, and
Mujumdar
,
A. S.
,
2010
, “
Turbulent Impinging Jet Heat Transfer Enhancement Due to Intermittent Pulsation
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1247
1252
.10.1016/j.ijthermalsci.2010.01.020
15.
Behera
,
R. C.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2007
, “
Numerical Study of Interrupted Impinging Jets for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
275
284
.10.1109/TCAPT.2007.898353
16.
Nevins
,
R. G.
, and
Ball
,
H. D.
,
1961
, “
Heat Transfer Between a Flat Plate and a Pulsating Impinging Jet
,”
ASME National Heat Transfer Conference
,
Boulder, CO
.
17.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.10.1016/0017-9310(96)00027-0
18.
Farrington
,
R. B.
, and
Claunch
,
S. D.
,
1994
, “
Infrared Imaging of Large-Amplitude, Low-Frequency Disturbances on a Planar Jet
,”
AIAA J.
,
32
(
2
), pp.
317
323
.10.2514/3.11987
19.
Eibeck
,
R. A.
,
Keller
,
J. O.
,
Bramlette
,
T. T.
, and
Sailor
,
D. J.
,
1993
, “
Pulse Combustion: Impinging Jet Heat Transfer Enhancement 1
,”
Combust. Sci. Technol.
,
94
(
1–6
), pp.
147
165
.10.1080/00102209308935308
20.
Kataoka
,
K.
,
Suguro
,
M.
,
Degawa
,
H.
,
Maruo
,
K.
, and
Mihata
,
I.
,
1987
, “
The Effect of Surface Renewal Due to Largescale Eddies on Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
30
(
3
), pp.
559
567
.10.1016/0017-9310(87)90270-5
21.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1997
, “
Local Convective Heat Transfer to Submerged Pulsating Jets
,”
Int. J. Heat Mass Transfer
,
40
(
14
), pp.
3305
3321
.10.1016/S0017-9310(96)00380-8
22.
Camci
,
C.
, and
Herr
,
F.
,
2002
, “
Forced Convection Heat Transfer Enhancement Using a Self-Oscillating Impinging Planar Jet
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
770
782
.10.1115/1.1471521
23.
Hofmann
,
H. M.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
17
), pp.
3638
3648
.10.1016/j.ijheatmasstransfer.2007.02.001
24.
Azevedo
,
L. F. A.
,
Webb
,
B. W.
, and
Queiroz
,
M.
,
1994
, “
Pulsed Air Jet Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
8
(
3
), pp.
206
213
.10.1016/0894-1777(94)90049-3
25.
Zulkifli
,
R.
, and
Sopian
,
K.
,
2007
, “
Studies on Pulse Jet Impingement Heat Transfer: Flow Profile and Effect of Pulse Frequencies on Heat Transfer
,”
Int. J. Eng. Technol.
,
4
(
1
), pp.
86
94
.
26.
Sewatkar
,
C. M.
,
Patel
,
R.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2012
, “
Flow Around Six In-Line Square Cylinders
,”
J. Fluid Mech.
,
710
, pp.
195
233
.10.1017/jfm.2012.359
27.
Sengupta
,
S.
,
Khan
,
M. H.
,
Veluri
,
V. K.
,
Vijayan
,
P. K.
,
Agrawal
,
A.
, and
Bhattacharya
,
S.
,
2015
, “
PIV Investigations on the Turbulent Mixing of Two Opposing Flows Inside a Scaled Chimney Model of a Research Reactor
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
115
132
.10.1016/j.expthermflusci.2015.01.014
28.
Hashiehbaf
,
A.
,
Baramade
,
A.
,
Agrawal
,
A.
, and
Romano
,
G. P.
,
2015
, “
Experimental Investigation on an Axisymmetric Turbulent Jet Impinging on a Concave Surface
,”
Int. J. Heat Fluid Flow
,
53
, pp.
167
182
.10.1016/j.ijheatfluidflow.2015.03.003
29.
Lazar
,
E.
,
DeBlauw
,
B.
,
Glumac
,
N.
,
Dutton
,
C.
, and
Eliott
,
G.
,
2010
, “
A Practical Approach to PIV Uncertainty Analysis
,”
AIAA
Paper No. 2010-4355.10.2514/6.2010-4355
30.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry: A Practical Guide
,
Springer-Verlag
,
Berlin
.10.1007/978-3-662-03637-2
31.
Wang
,
L.
,
Hejcik
,
J.
, and
Sunden
,
B.
,
2007
, “
PIV Measurement of Separated Flow in a Square Channel With Streamwise Periodic Ribs on One Wall
,”
ASME J. Fluids Eng.
,
129
(7), pp.
834
841
.10.1115/1.2742723
32.
Ashforth-Frost
,
S.
,
Jambunathan
,
K.
, and
Whitney
,
C. F.
,
1997
, “
Velocity and Turbulence Characteristics of a Semiconfined Orthogonally Impinging Slot Jet
,”
Exp. Therm. Fluid Sci.
,
14
(
1
), pp.
60
67
.10.1016/S0894-1777(96)00112-4
33.
Cornaro
,
C.
,
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
,
1999
, “
Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces
,”
Exp. Therm. Fluid Sci.
,
20
(
2
), pp.
66
78
.10.1016/S0894-1777(99)00032-1
34.
Hofmann
,
H. M.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Calculations of Steady and Pulsating Impinging Jets—An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer, Part B
,
51
(
6
), pp.
565
583
.10.1080/10407790701227328
35.
Janetzke
,
T.
,
Nitsche
,
W.
, and
Täge
,
J.
,
2008
, “
Experimental Investigations of Flow Field and Heat Transfer Characteristics Due to Periodically Pulsating Impinging Air Jets
,”
Heat Mass Transfer
,
45
(
2
), pp.
193
206
.10.1007/s00231-008-0410-8
You do not currently have access to this content.