Theoretical study on the thermal assessment of two types of tumor ablation techniques, viz., focused laser for ablating skin lesion and focused high-frequency ultrasound for ablating breast tumor has been presented in this article. Estimation of temperature rise and the induced thermal damage in the skin using laser heating have been done by integrating the bioheat transfer, the laser-light attenuation, and the thermal damage models. Further, ultrasound heating of deep seated tumor within the breast has been implemented to estimate the temperature rise and the induced thermal damage by combining the bioheat transfer, the vascularized, the pressure wave, and the thermal damage models. The theoretical models for skin, breast, and blood vessels have been constructed based on the anatomical details, thermophysical, optical, and acoustic properties available in the literature. The study indicates that the focused ultrasound heating can selectively raise the temperature of the tissue above the ablation limit sparing the surrounding healthy ones and imposes sufficient thermal damage to the entire tumor volume in a relatively short exposure time and longer cooling period. Whereas the laser-based heating would lead to collateral damage of the surrounding tissues and demands longer exposure time in order to achieve complete heating of the tumor volume. Heating of tumor at a uniform rate is a major issue in both the cases, and in the course of heating, the entire tumor volume in certain regions may experience irregular necrosis rate and char formation. Based on the comprehensive modeling efforts, the study further suggests two important thermal ablation criteria for complete and uniform heating of tumor volume at relatively short exposure time.

References

References
1.
Cancer Fact Sheets
,
2012
, “
GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012
,” last accessed Apr. 4, 2014, http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
2.
Dinehart
,
S. M.
, and
Pollack
,
S. V.
,
1989
, “
Mohs Micrographic Surgery for Skin Cancer
,”
Cancer Treat. Rev.
,
16
(
4
), pp.
257
265
.10.1016/0305-7372(89)90045-5
3.
Kuflik
,
E. G.
, and
Gage
,
A. A.
,
1991
, “
The Five-Year Cure Rate Achieved by Cryosurgery for Skin Cancer
,”
J. Am. Acad. Dermatol.
,
24
(
6
), pp.
1002
1004
.10.1016/0190-9622(91)70160-4
4.
Goldman
,
L.
,
1977
, “
Laser Surgery for Skin Cancer
,”
N. Y. State J. Med.
,
77
(
12
), pp.
1897
1900
.
5.
Nelson
,
B. R.
,
Fader
,
D. J.
,
Gillard
,
M.
,
Baker
,
S. R.
, and
Johnson
,
T. M.
,
1995
, “
The Role of Dermabrasion and Chemical Peels in the Treatment of Patients With Xeroderma Pigmentosum
,”
J. Am. Acad. Dermatol.
,
32
(
4
), pp.
623
626
.10.1016/0190-9622(95)90348-8
6.
Martin
,
H. E.
,
1933
, “
Radiation Therapy in Skin Cancer
,”
Am. J. Cancer
,
19
, pp.
605
621
.
7.
Klein
,
E.
,
Case
,
R. W.
, and
Burgess
,
G. H.
,
1973
, “
Chemotherapy of Skin Cancer
,”
CA: Cancer J. Clin.
,
23
(
4
), pp.
228
231
.
8.
Henderson
,
B. W.
, and
Dougherty
,
T. J.
,
1992
, “
How Does Photodynamic Therapy Work?
,”
Photochem. Photobiol.
,
55
(
1
), pp.
145
157
.10.1111/j.1751-1097.1992.tb04222.x
9.
Veronesi
,
U.
,
Adamus
,
J.
,
Aubert
,
C.
,
Bajetta
,
E.
,
Beretta
,
G.
,
Bonadonna
,
G.
,
Bufalino
,
R.
,
Cascinelli
,
N.
,
Cocconi
,
G.
,
Durand
,
J.
,
De Marsillac
,
J.
,
Ikonopisov
,
R. L.
,
Kiss
,
B.
,
Lejeune
,
F.
,
MacKie
,
R.
,
Madej
,
G.
,
Mulder
,
H.
,
Mechl
,
Z.
,
Milton
,
G. W.
,
Morabito
,
A.
,
Peter
,
H.
,
Priario
,
J.
,
Paul
,
E.
,
Rumke
,
P.
,
Sertoli
,
R.
, and
Tomin
,
R.
,
1982
, “
A Randomized Trial of Adjuvant Chemotherapy and Immunotherapy in Cutaneous Melanoma
,”
N. Engl. J. Med.
,
307
(
15
), pp.
913
916
.10.1056/NEJM198210073071503
10.
Fisher
,
B.
,
Anderson
,
S.
,
Bryant
,
J.
,
Margolese
,
R. G.
,
Deutsch
,
M.
,
Fisher
,
E. R.
,
Jeong
,
J. H.
, and
Wolmark
,
N.
,
2002
, “
Twenty-Year Follow-Up of a Randomized Trial Comparing Total Mastectomy, Lumpectomy, and Lumpectomy Plus Irradiation for the Treatment of Invasive Breast Cancer
,”
N. Engl. J. Med.
,
347
(
16
), pp.
1233
1241
.10.1056/NEJMoa022152
11.
Bonadonna
,
G.
, and
Valagussa
,
P.
,
1981
, “
Dose-Response Effect of Adjuvant Chemotherapy in Breast Cancer
,”
N. Engl. J. Med.
,
304
(
1
), pp.
10
15
.10.1056/NEJM198101013040103
12.
Beral
,
V.
,
Banks
,
E.
,
Reeves
,
G.
, and
Bull
,
D.
,
2003
, “
Breast Cancer and Hormone-Replacement Therapy: The Million Women Study
,”
Lancet
,
362
(
9382
), pp.
1330
1331
.10.1016/S0140-6736(03)14596-5
13.
Semenza
,
G. L.
,
2003
, “
Targeting HIF-1 for Cancer Therapy
,”
Nat. Rev. Cancer
,
3
(
10
), pp.
721
732
.10.1038/nrc1187
14.
Megan
,
J.
,
Raje
,
S.
,
Kim
,
K.
,
Mitra
,
K.
, and
Guo
,
Z.
,
2008
, “
Bio-Heat Transfer Analysis During Short Pulse Laser Irradiation of Tissues
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5511
5521
.10.1016/j.ijheatmasstransfer.2008.04.033
15.
Jiao
,
J.
, and
Guo
,
Z.
,
2009
, “
Thermal Interaction of Short-Pulsed Laser Focused Beams With Skin Tissues
,”
Phys. Med. Biol.
,
54
(
13
), pp.
4225
4241
.10.1088/0031-9155/54/13/017
16.
Sarantou
,
T.
,
Gilchik
,
A.
, and
Ramming
,
K. P.
,
1998
, “
Complications in Hepatic Cryosurgery
,”
Semin. Surg. Oncol.
,
14
(
2
), pp.
156
162
.10.1002/(SICI)1098-2388(199803)14:2<156::AID-SSU7>3.0.CO;2-4
17.
Wu
,
F.
,
Wang
,
Z. B.
,
Cao
,
Y. D.
,
Chen
,
W. Z.
,
Bai
,
J.
,
Zou
,
J. Z.
, and
Zhu
,
H.
,
2003
, “
A Randomised Clinical Trial of High-Intensity Focused Ultrasound Ablation for the Treatment of Patients With Localised Breast Cancer
,”
Br. J. Cancer
,
89
(
12
), pp.
2227
2233
.10.1038/sj.bjc.6601411
18.
Singletary
,
S. E.
,
Fornage
,
B. D.
,
Sneige
,
N.
,
Ross
,
M. I.
,
Simmons
,
R.
,
Giuliano
,
A.
,
Hansen
,
N.
,
Kuerer
,
H.
,
Newman
,
L.
,
Ames
,
F.
,
Babiera
,
G.
,
Meric
,
F.
,
Hunt
,
K.
,
Edeiken
,
B.
, and
Mirza
,
A. N.
,
2002
, “
Radiofrequency Ablation of Early-Stage Invasive Breast Tumors: An Overview
,”
Cancer J.
,
8
(
2
), pp.
177
180
.10.1097/00130404-200203000-00011
19.
Soni
,
S.
,
Tyagi
,
H.
,
Taylor
,
R. A.
, and
Kumar
,
A.
,
2013
, “
Role of Optical Coefficients and Healthy Tissue-Sparing Characteristics in Gold Nanorod-Assisted Thermal Therapy
,”
Int. J. Hyperthermia
,
29
(
1
), pp.
87
97
.10.3109/02656736.2012.753162
20.
Randrianalisoa
,
J. H.
,
Dombrovsky
,
L. A.
,
Lipiński
,
W.
, and
Timchenko
,
V.
,
2014
, “
Effects of Short-Pulsed Laser Radiation on Transient Heating of Superficial Human Tissues
,”
Int. J. Heat Mass Transfer
,
78
, pp.
488
497
.10.1016/j.ijheatmasstransfer.2014.07.011
21.
Derfus
,
A. M.
,
von Maltzahn
,
G.
,
Harris
,
T. J.
,
Duza
,
T.
,
Vecchio
,
K. S.
,
Ruoslahti
,
E.
, and
Bhatia
,
S. N.
,
2007
, “
Remotely Triggered Release From Magnetic Nanoparticles
,”
Adv. Mater.
,
19
(
22
), pp.
3932
3936
.10.1002/adma.200700091
22.
Wust
,
P.
,
Hildebrandt
,
B.
,
Sreenivasa
,
G.
,
Rau
,
B.
,
Gellermann
,
J.
,
Riess
,
H.
,
Felix
,
R.
, and
Schlag
,
P. M.
,
2002
, “
Hyperthermia in Combined Treatment of Cancer
,”
Lancet Oncol.
,
3
(
8
), pp.
487
497
.10.1016/S1470-2045(02)00818-5
23.
Çetingül
,
M. P.
, and
Herman
,
C.
,
2010
, “
A Heat Transfer Model of Skin Tissue for the Detection of Lesions: Sensitivity Analysis
,”
Phys. Med. Biol.
,
55
(
19
), pp.
5933
5951
.10.1088/0031-9155/55/19/020
24.
Ng
,
E. Y. K.
, and
Sudharsan
,
N. M.
,
2001
, “
An Improved Three Dimensional Direct Numerical Modelling and Thermal Analysis of a Female Breast With Tumor
,”
Proc. Inst. Mech. Eng. H
,
215
(
1
), pp.
25
36
.10.1243/0954411011533508
25.
Ekstrand
,
V.
,
Wiksell
,
H.
,
Schultz
,
I.
,
Sandstedt
,
B.
,
Rotstein
,
S.
, and
Eriksson
,
A.
,
2005
, “
Influence of Electrical and Thermal Properties on RF Ablation of Breast Cancer: Is the Tumour Preferentially Heated?
,”
BioMed. Eng. Online
.10.1186/1475-925X-4-41
26.
Bezerra
,
L. A.
,
Oliveira
,
M. M.
,
Rolim
,
T. L.
,
Conci
,
A.
,
Santos
,
F. G. S.
,
Lyra
,
P. R. M.
, and
Lima
,
R. C. F.
,
2013
, “
Estimation of Breast Tumor Thermal Properties Using Infrared Images
,”
Signal Process.
,
93
(
10
), pp.
2851
2863
.10.1016/j.sigpro.2012.06.002
27.
Balasubramaniam
,
T. A.
, and
Bowman
,
H. F.
,
1977
, “
Thermal Conductivity and Thermal Diffusivity of Biomaterials: A Simultaneous Measurement Technique
,”
ASME J. Biomech. Eng.
,
99
(
3
), pp.
148
154
.10.1115/1.3426282
28.
Wang
,
S.
,
Zhao
,
J.
,
Lui
,
H.
,
He
,
Q.
, and
Zeng
,
H.
,
2011
, “
Monte Carlo Simulation of Near Infrared Autofluorescence Measurements of in vivo Skin
,”
J. Photochem. Photobiol. B
,
105
(
3
), pp.
183
189
.10.1016/j.jphotobiol.2011.08.008
29.
Bashkatov
,
A. N.
,
Genina
,
E. A.
, and
Tuchin
,
V. V.
,
2011
, “
Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review
,”
J. Innovative Opt. Health Sci.
,
4
(
1
), pp.
9
38
.10.1142/S1793545811001319
30.
Salomatina
,
E.
,
Jiang
,
B.
,
Novak
,
J.
, and
Yaroslavsky
,
A. N.
,
2006
, “
Optical Properties of Normal and Cancerous Human Skin in Visible and Near-Infrared Spectral Range
,”
J. Biomed. Opt.
,
11
(
6
), p. 064026.10.1117/1.2398928
31.
Scherzinger
,
A. L.
,
Belgam
,
R. A.
,
Carson
,
P. L.
,
Meyer
,
C. R.
,
Sutherland
,
J. V.
,
Bookstein
,
F. L.
, and
Silver
,
T. M.
,
1989
, “
Assessment of Ultrasonic Computed-Tomography in Symptomatic Breast Patients by Discriminant-Analysis
,”
Ultrasound Med. Biol.
,
15
(
1
), pp.
21
28
.10.1016/0301-5629(89)90128-2
32.
Goss
,
S. A.
,
Johnston
,
R. L.
, and
Dunn
,
F.
,
1978
, “
Comprehensive Compilation of Empirical Ultrasonic Properties of Mammalian-Tissues
,”
J. Acoust. Soc. Am.
,
64
(
2
), pp.
423
457
.10.1121/1.382016
33.
Mast
,
T. D.
,
2000
, “
Empirical Relationships Between Acoustic Parameters in Human Soft Tissues
,”
Acoust. Res. Lett. Online
,
1
(
2
), pp.
37
–42.10.1121/1.1336896
34.
D'Astous
,
F. T.
, and
Foster
,
F. S.
,
1986
, “
Frequency-Dependence of Ultrasound Attenuation and Backscatter in Breast-Tissue
,”
Ultrasound Med. Biol.
,
12
(
10
), pp.
795
808
.10.1016/0301-5629(86)90077-3
35.
Nam
,
K.
,
Zagzebski
,
J. A.
, and
Hall
,
T. J.
,
2013
, “
Quantitative Assessment of in vivo Breast Masses Using Ultrasound Attenuation and Backscatter
,”
Ultrason. Imaging
,
35
(
2
), pp.
146
161
.10.1177/0161734613480281
36.
Solovchuk
,
M. A.
,
Sheu
,
T. W. H.
,
Thiriet
,
M.
, and
Lin
,
W. L.
,
2013
, “
On a Computational Study for Investigating Acoustic Streaming and Heating During Focused Ultrasound Ablation of Liver Tumor
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
62
76
.10.1016/j.applthermaleng.2013.02.041
37.
Cannon
,
L. M.
,
Fagan
,
A. J.
, and
Browne
,
J. E.
,
2011
, “
Novel Tissue Mimicking Materials for High Frequency Breast Ultrasound Phantoms
,”
Ultrasound Med. Biol.
,
37
(
1
), pp.
122
135
.10.1016/j.ultrasmedbio.2010.10.005
38.
Hynymen
,
K.
,
Pomeroy
,
O.
,
Smith
,
D. N.
,
Huber
,
P. E.
,
McDannold
,
N. J.
,
Kettenbach
,
J.
,
Baum
,
J.
,
Singer
,
S.
, and
Jolesz
,
F. A.
,
2001
, “
MR Imaging-Guided Focused Ultrasound Surgery of Fibroadenomas in the Breast: A Feasibility Study 1
,”
Radiology
,
219
(
1
), pp.
176
185
.10.1148/radiology.219.1.r01ap02176
39.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Flow Temperatures in the Resting Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.
40.
Bhowmik
,
A.
,
Singh
,
R.
,
Repaka
,
R.
, and
Mishra
,
S. C.
,
2013
, “
Conventional and Newly Developed Bioheat Transport Models in Vascularized Tissues: A Review
,”
J. Therm. Biol.
,
38
(
3
), pp.
107
125
.10.1016/j.jtherbio.2012.12.003
41.
Vignon-Clementel
,
I. E.
,
Alberto Figueroa
,
C.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
42.
Bhowmik
,
A.
,
Repaka
,
R.
, and
Mishra
,
S. C.
,
2014
, “
Thermographic Evaluation of Early Melanoma Within the Vascularized Skin Using Combined Non-Newtonian Blood Flow and Bioheat Models
,”
Comput. Biol. Med.
,
53
, pp.
206
219
.10.1016/j.compbiomed.2014.08.002
43.
Saladin
,
K. S.
,
2011
,
Anatomy and Physiology: The Unity of Form and Function
,
6th ed.
,
McGraw-Hill
,
New York
, pp.
678
749
.
44.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.10.1016/j.jbiomech.2003.09.016
45.
Bhowmik
,
A.
,
Repaka
,
R.
,
Mishra
,
S. C.
, and
Mitra
,
K.
,
2014
, “
Analysis of Radiative Signals From Normal and Malignant Human Skins Subjected to a Short-Pulse Laser
,”
Int. J. Heat Mass Transfer
,
68
, pp.
278
294
.10.1016/j.ijheatmasstransfer.2013.09.032
46.
Huang
,
J.
,
Holt
,
R. G.
,
Cleveland
,
R. O.
, and
Roy
,
R. A.
,
2004
, “
Experimental Validation of a Tractable Numerical Model for Focused Ultrasound Heating in Flow-Through Tissue Phantoms
,”
J. Acoust. Soc. Am.
,
116
(
4 Pt. 1
), pp.
2451
2458
.10.1121/1.1787124
47.
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury; The Predictability and Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
,
43
(
5
), pp.
489
502
.
48.
Jia
,
W. C.
,
Choi
,
B.
,
Franco
,
W.
,
Lotfi
,
J.
,
Majaron
,
B.
,
Aguilar
,
G.
, and
Nelson
,
J. S.
,
2007
, “
Treatment of Cutaneous Vascular Lesions Using Multiple-Intermittent Cryogen Spurts and Two-Wavelength Laser Pulses: Numerical and Animal Studies
,”
Lasers Surg. Med.
,
39
(
6
), pp.
494
503
.10.1002/lsm.20524
49.
Sapareto
,
S. A.
, and
Dewey
,
W. C.
,
1984
, “
Thermal Dose Determination in Cancer Therapy
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
10
(
6
), pp.
787
800
.10.1016/0360-3016(84)90379-1
You do not currently have access to this content.