This paper reports the time-mean and phase-locked response of nonreacting as well as reacting flow field in a coaxial swirling jet/flame (nonpremixed). Two distinct swirl intensities plus two different central pipe flow rates at each swirl setting are investigated. The maximum response is observed at the 105 Hz mode in the range of excitation frequencies (0–315 Hz). The flow/flame exhibited minimal response beyond 300 Hz. It is seen that the aspect ratio change of inner recirculation zone (IRZ) under nonreacting conditions (at responsive modes) manifests as a corresponding increase in the time-mean flame aspect ratio. This is corroborated by ∼25% decrease in the IRZ transverse width in both flame and cold flow states. In addition, 105 Hz excited states are found to shed high energy regions (eddies) asymmetrically when compared to dormant 315 Hz pulsing frequency. The kinetic energy (KE) of the flow field is subsequently reduced due to acoustic excitation and a corresponding increase (∼O (1)) in fluctuation intensity is witnessed. The lower swirl intensity case is found to be more responsive than the high swirl case as in the former flow state the resistance offered by IRZ to incoming acoustic perturbations is lower due to inherently low inertia. Next, the phase-locked analysis of flow and flame structure is employed to further investigate the phase dependence of flow/flame response. It is found that the asymmetric shifting of IRZ mainly results at 270 deg acoustic forcing. The 90 deg phase angle forcing is observed to convect the IRZ farther downstream in both swirl cases as compared to other phase angles. The present work aims primarily at providing a fluid dynamic view point to the observed nonpremixed flame response without considering the confinement effects.

References

References
1.
Lieuwen
,
T.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, New York.10.1017/CBO9781139059961
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2006
, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
,”
Progress in Astronautics and Aeronautics
, Vol.
210
, AIAA, Reston, VA.10.2514/4.866807
3.
Ribeiro
,
M. M.
, and
Whitelaw
,
J. H.
,
1980
, “
Coaxial Jets With and Without Swirl
,”
J. Fluid Mech.
,
96
(
4
), pp.
769
795
.10.1017/S0022112080002352
4.
Syred
,
N.
, and
Dahman
,
K. R.
,
1978
, “
Effect of High Levels of Confinement Upon the Aerodynamics of Swirl Burners
,”
J. Energy
,
2
(
1
), pp.
8
15
.10.2514/3.47950
5.
Escudier
,
M. P.
, and
Keller
,
J. J.
,
1985
, “
Recirculation in Swirling Flow: A Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.10.2514/3.8878
6.
Al-Abdeli
,
Y. M.
, and
Masri
,
A. R.
,
2003
, “
Recirculation and Flow Field Regimes of Unconfined Non-Reacting Swirling Flows
,”
Exp. Therm. Fluid Sci.
,
27
(
5
), pp.
655
665
.10.1016/S0894-1777(02)00280-7
7.
Al-Abdeli
,
Y. M.
, and
Masri
,
A. R.
,
2004
, “
Precession and Recirculation in Turbulent Swirling Isothermal Jets
,”
Combust. Sci. Technol.
,
176
(
5–6
), pp.
645
665
.10.1080/00102200490427883
8.
Champagne
,
F. H.
, and
Kromat
,
S.
,
2000
, “
Experiments on the Formation of a Recirculation Zone in Swirling Coaxial Jets
,”
Exp. Fluids
,
29
(
5
), pp.
494
504
.10.1007/s003480000118
9.
Huang
,
R. F.
, and
Tsai
,
F. C.
,
2001
, “
Flow Field Characteristics of Swirling Double Concentric Jets
,”
Exp. Therm. Fluid Sci.
,
25
(
3–4
), pp.
151
161
.10.1016/S0894-1777(01)00086-3
10.
Giannadakis
,
A.
,
Perrakis
,
K.
, and
Panidis
,
Th.
,
2008
, “
A Swirling Jet Under the Influence of a Coaxial Flow
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1548
1563
.10.1016/j.expthermflusci.2008.04.010
11.
Santhosh
,
R.
,
Miglani
,
A.
, and
Basu
,
S.
,
2013
, “
Transition and Acoustic Response of Recirculation Structures in an Unconfined Co-Axial Isothermal Swirling Flow
,”
Phys. Fluids
,
25
(
8
), p.
083603
.10.1063/1.4817665
12.
Santhosh
,
R.
,
Miglani
,
A.
, and
Basu
,
S.
,
2014
, “
Transition in Vortex Breakdown Modes in a Coaxial Isothermal Unconfined Swirling Jet
,”
Phys. Fluids
,
26
(
4
), p.
043601
.10.1063/1.4870016
13.
Adzlan
,
A.
, and
Gotoda
,
H.
,
2012
, “
Experimental Investigation of Vortex Breakdown in a Coaxial Swirling Jet With a Density Difference
,”
Chem. Eng. Sci.
,
80
, pp.
174
181
.10.1016/j.ces.2012.05.027
14.
Khalil
,
S.
,
Hourigan
,
K.
, and
Thompson
,
M. C.
,
2006
, “
Response of Unconned Vortex Breakdown to Axial Pulsing
,”
Phys. Fluids
,
18
(
3
), p.
038102
.10.1063/1.2180290
15.
Alekseenko
,
S. V.
,
Dulin
,
V. M.
,
Kozorezov
,
Y. S.
, and
Markovich
,
D. M.
,
2008
, “
Effect of Axisymmetric Forcing on the Structure of a Swirling Turbulent Jet
,”
Int. J. Heat Fluid Flow
29
(
6
), pp.
1699
1715
.10.1016/j.ijheatfluidflow.2008.07.005
16.
Gursul
,
I.
,
1996
, “
Effect of Nonaxisymmetric Forcing on a Swirling Jet With Vortex Breakdown
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
316
321
.10.1115/1.2817379
17.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Recirculation Zone Dynamics of a Transversely Excited Swirl Flow and Flame
,”
Phys. Fluids
,
24
(
7
), p.
075107
.10.1063/1.4731300
18.
Idahosa
,
U.
,
Saha
,
A.
,
Xu
,
C.
, and
Basu
,
S.
,
2010
, “
Non-Premixed Acoustically Perturbed Swirling Flame Dynamics
,”
Combust. Flame
,
157
(
9
), pp.
1800
1814
.10.1016/j.combustflame.2010.05.008
19.
Idahosa
,
U.
,
Basu
,
S.
, and
Miglani
,
A.
,
2014
, “
System Level Analysis of Acoustically Forced Non-Premixed Swirling Flames
,”
J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031015
.10.1115/1.4027297
20.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
ABACUS Press
, Cambridge, MA.
21.
Prasad
,
A. K.
,
Adrian
,
R. J.
,
Landreth
,
C. C.
, and
Offutt
,
P. W.
,
1992
, “
Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation
,”
Exp. Fluids
,
13
(
2–3
), pp.
105
116
.10.1007/BF00218156
22.
Thumuluru
,
S. K.
, and
Lieuwen
,
T.
,
2009
, “
Characterization of Acoustically Forced Swirl Flame Dynamics
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2893
2900
.10.1016/j.proci.2008.05.037
23.
Kulsheimer
,
C.
, and
Buchner
,
H.
,
2002
, “
Combustion Dynamics of Turbulent Swirling Flames
,”
Combust. Flame
,
131
(
1–2
), pp.
70
84
.10.1016/S0010-2180(02)00394-2
You do not currently have access to this content.