Cryogenic fluid entering a warm feedline absorbs heat and undergoes rapid flash evaporation leading to pressure surges, which can retard the flow inside the feedline. It may have serious repercussion in operation of the rocket engine during start up. Experimental and numerical studies are carried out to examine the effect of inlet pressure and initial feedline temperature on pressure surges. An analytical model using sinda/fluint software is developed to investigate this complex two-phase flow phenomenon including the various boiling regimes that exist during line chilling. The numerical study is carried out considering 1D flow through a cryogenic feedline of 2.47 m long and 0.01 m inner diameter with liquid nitrogen at 77.3 K as working fluid. Predictions are made for the inlet pressure in the range of 0.28–0.76 MPa and initial wall temperature of 200 K and 300 K. Subsequently, an experimental test rig is setup and the model is validated with the experimental data. The studies show that within the range of parameter considered, the magnitude of pressure surge increases exponentially with increase in inlet pressure and decreases with the prechilling of feedline.

References

References
1.
Lochkhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlations of Data for Isothermal Two-Phase Two Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
2.
Burke
,
J. E.
,
Byrnes
,
W. R.
,
Post
,
A. H.
, and
Ruccia
,
F. E.
,
1960
, “
Pressurised Cooldown of Cryogenic Transfer Line
,”
Adv. Cryog. Eng.
,
4
, pp.
378
394
.10.1007/978-1-4757-0540-9_33
3.
Bronson
,
J. C.
,
Edeskuty
,
F. J.
,
Fretwell
,
J. H.
,
Hammel
,
E. F.
,
Keller
,
W. E.
,
Meier
,
K. L.
,
Schuch
,
A. F.
, and
Willis
,
W. L.
,
1962
, “
Cooldown of Cryogenic Systems
,”
Adv. Cryog. Eng.
,
7
, pp.
198
205
.10.1007/978-1-4757-0531-7_25
4.
Jacobs
,
R. B.
,
1963
, “
Liquid Requirements for the Cooldown of Cryogenic Equipments
,”
Adv. Cryog. Eng.
,
8
, pp.
529
535
.
5.
Chi
,
J. W. H.
, and
Vetere
,
A. M.
,
1964
, “
Two Phase Flow During Transient Boiling of Hydrogen and Determination of Non-Equilibrium Vapor Fractions
,”
Adv. Cryog. Eng.
,
9
, pp.
243
253
.10.1007/978-1-4757-0525-6_29
6.
Chi
,
J. W. H.
,
1965
, “
Cooldown Temperature and Cooldown Time in Mist Flow
,”
Adv. Cryog. Eng.
,
10
, pp.
330
340
.10.1007/978-1-4684-3108-7_40
7.
Steward
,
W. G.
,
1965
, “
Transfer Line Surge
,”
Adv. Cryog. Eng.
,
10
, pp.
313
322
.10.1007/978-1-4684-3108-7_38
8.
Roger
,
J. D.
,
1968
, “
Two Phase Friction Factor for Para-Hydrogen Between One Atmosphere and the Critical Pressure
,”
AICHE J.
,
14
(
6
), pp.
895
902
.10.1002/aic.690140614
9.
John
,
D. R.
, and
Gary
,
T.
,
1969
, “
Two Phase Friction Factor for Nitrogen Between One Atmosphere and the Critical Pressure
,”
AICHE J.
,
15
(
1
), pp.
144
146
.10.1002/aic.690150135
10.
Steward
,
W. G.
,
Smith
,
R. V.
, and
Bernnan
,
J. A.
,
1970
, “
Cooldown Transients in Cryogenic Transfer Lines
,”
Proceedings of the Cryogenic Engineering Conference
, Vol.
15
, pp.
354
363
.
11.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.10.1016/0017-9310(86)90205-X
12.
Liu
,
Z.
, and
Winterton
,
R. H. S.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Boiling Equation
,”
J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
.10.1016/0017-9310(91)90234-6
13.
Filippov
,
Yu. P.
,
1999
, “
Characteristics of Horizontal Two-Phase Helium Flows-Flow Patterns and Void Fraction
,”
Cryogenics
,
39
(
1
), pp.
59
68
.10.1016/S0011-2275(98)00114-3
14.
Van Dresar
,
N. T.
,
Siegwarth
,
J. D.
, and
Hasan
,
M. M.
,
2002
, “
Convective Heat Transfer Coefficient for Near-Horizontal Two-Phase Flow of Nitrogen and Hydrogen at Low Mass and Heat Flux
,”
Cryogenics
,
41
(
11–12
), pp.
805
811
.10.1016/S0011-2275(01)00173-4
15.
Cross
,
M. F.
,
Majumdar
,
A. K.
,
Bennett
,
J. C.
, Jr.
, and
Malla
,
R. B.
,
2002
, “
Modeling of Chilldown in Cryogenic Transfer Lines
,”
J. Spacecr. Rockets
,
39
(
2
), pp.
284
289
.10.2514/2.3810
16.
Majumdar
,
A.
,
2004
, “
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
,”
Thermal Fluid Analysis Workshop
, Jet Propulsion Laboratory, Pasadena, CA.
17.
Yuan
,
K.
,
Yan
,
J.
, and
Chung
,
J. N.
,
2009
, “
Numerical Modeling of Cryogenic Chilldown Process in Terrestrial Gravity and Microgravity
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
44
53
.10.1016/j.ijheatfluidflow.2008.10.004
18.
Roberson
,
J. A.
, and
Crowe
,
C. T.
,
1999
,
Engineering Fluid Mechanics
,
Houghton Mifflin
,
Boston, MA
, Chap. 5.
19.
Ghiaasiaan
,
S. M.
,
2008
,
Two-Phase Flow, Boiling and Condensation in Conventional and Miniature Systems
,
Cambridge University Press
,
Cambridge, UK
, Chap. 10 and 13.
20.
Hendricks
,
R. C.
,
Baron
,
A. K.
, and
Peller
,
I. C.
,
1975
, “
GASP: A Computer Code for Calculating the Neon, Methane, Nitrogen, Carbon Monoxide, Oxygen, Fluorine, Argon, and Carbon Dioxide
,” Technical Report No. NASA TN D–7808.
21.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2009
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons PTE. Ltd
,
Singapore
, Chap. 8.
22.
Miropolskii
,
Z. L.
,
1963
, “
Heat Transfer in Film Boiling of a Steam-Water Mixture in Steam Generating Tubes
,”
Teploenergetika
,
10
, pp.
49
52
.
You do not currently have access to this content.