Numerical simulation employing different models is popularly used to predict spray combustion of liquid fuels. In the present work, we have compared the effects of three different combustion models, viz., eddy dissipation model, laminar flamelet model with detailed chemical reaction mechanism, and constrained equilibrium flamelet model, on the temperature, soot, and NOx distributions in an axisymmetric combustor burning kerosene spray. Experiments have also been performed in a combustor of the same geometry to validate some predictions from the models. The constraint condition for the equilibrium flamelet model has been adopted by suitably accounting the effects of scalar dissipation rate on the prediction of scalar variables in a laminar flamelet and by considering the mixture fraction and scalar dissipation rate distributions in the combustor under test. It is found that the results predicted by the two flamelet models agree closely between them and also with the experiments. On the other hand, the eddy dissipation model predicts a much higher flame temperature, soot, and NOx concentrations in the combustor. The results suggest the importance of chemistry in the prediction of the turbulent spray flame. It also suggests that with a proper choice of the constraint condition, the equilibrium flamelet model can address the nonequilibrium chemistry in the flame due to the high value of scalar dissipation rate.

References

References
1.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics the Finite Volume Method
,
2nd ed.
,
Pearson Education
,
Harlow, UK
.
2.
Faeth
,
G. M.
,
1987
, “
Mixing Transport and Combustion in Sprays
,”
Prog. Energy Combust. Sci.
,
13
(
4
), pp.
293
345
.10.1016/0360-1285(87)90002-5
3.
Kuo
,
K. K.
, and
Acharya
,
R.
,
2012
,
Fundamentals of Turbulent and Multiphase Combustion
,
Wiley
,
Hoboken, NJ
.
4.
Jenny
,
P.
,
Roekaerts
,
D.
, and
Beishuizen
,
N.
,
2012
, “
Modeling of Turbulent Dilute Spray Combustion
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
846
887
.10.1016/j.pecs.2012.07.001
5.
De
,
S.
,
Lakshmisha
,
K. N.
, and
Bilger
,
R. W.
,
2011
, “
Modeling of Non-Reacting and Reacting Turbulent Spray Jets Using a Fully Stochastic Separated Flow Approach
,”
Combust. Flame
,
158
(
10
), pp.
1992
2008
.10.1016/j.combustflame.2011.03.006
6.
Rotondi
,
R.
, and
Bella
,
G.
,
2006
, “
Gasoline Direct Injection Spray Simulation
,”
Int. J. Therm. Sci.
,
45
(
2
), pp.
168
179
.10.1016/j.ijthermalsci.2005.06.001
7.
Park
,
S. W.
, and
Reitz
,
R. D.
,
2008
, “
Modeling the Effect of Injector Nozzle-Holelayout on Diesel Engine Fuel Consumption and Emissions
,”
ASME J. Eng. Gas Turbines Power
,
130
(3), p.
032805
.10.1115/1.2835352
8.
Tolpadi
,
A. K.
,
1995
, “
Calculation of Two Phase Flow in Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
695
703
.10.1115/1.2815455
9.
Datta
,
A.
, and
Som
,
S. K.
,
1999
, “
Combustion and Emission Characteristics in a Gas Turbine Combustor at Different Pressure and Swirl Conditions
,”
Appl. Therm. Eng.
,
19
(
9
), pp.
949
967
.10.1016/S1359-4311(98)00102-1
10.
Jo
,
S.
,
Kim
,
H. Y.
, and
Yoon
,
S. S.
,
2008
, “
Numerical Investigation on the Effects of Inlet Air Temperature on Spray Combustion in a Wall Jet Can Combustor Using k-ε Turbulence Model
,”
Numer. Heat Transfer, Part A
,
54
(
12
), pp.
1101
1120
.10.1080/10407780802552179
11.
Byun
,
D.
, and
Baek
,
S. W.
,
2007
, “
Numerical Investigation of Combustion With Non-Gray Thermal Radiation and Soot Formation Effect in a Liquid Rocket Engine
,”
Int. J. Heat Mass Transfer
,
50
(
3
), pp.
412
422
.10.1016/j.ijheatmasstransfer.2006.09.020
12.
Kumaran
,
K.
, and
Babu
,
V.
,
2009
, “
Mixing and Combustion Characteristics of Kerosene in a Model Supersonic Combustor
,”
J. Propul. Power
,
25
(
3
), pp.
583
592
.10.2514/1.40140
13.
Moin
,
P.
, and
Apte
,
S. V.
,
2006
, “
Large-Eddy Simulation for Realistic Gas Turbine Combustors
,”
AIAA J.
,
44
(
4
), pp.
698
708
.10.2514/1.14606
14.
Luo
,
K.
,
Pitsch
,
H.
,
Pai
,
M. G.
, and
Desjardins
,
O.
,
2011
, “
Direct Numerical Simulations and Analysis of Three-Dimensional n-Heptane Spray Flames in a Model Swirl Combustor
,”
Proc. Combust. Inst.
,
33
(2), pp.
2143
2152
.10.1016/j.proci.2010.06.077
15.
Karim
,
V. M.
,
Bart
,
M.
, and
Erik
,
D.
,
2003
, “
Comparative Study of k-ε Turbulence Models in Inert and Reacting Swirling Flows
,”
AIAA
Paper No. 2003-3744. 10.2514/6.2003-3744
16.
Joung
,
D.
, and
Huh
,
K. Y.
,
2010
, “
3D RANS Simulation of Turbulent Flow and Combustion in a 5 MW Reverse-Flow Type Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111504
.10.1115/1.4000894
17.
Zeinivand
,
H.
, and
Bazdidi-Tehrani
,
F.
,
2012
, “
Influence of Stabilizer Jets on Combustion Characteristics and NOx Emission in a Jet-Stabilized Combustor
,”
Appl. Energy
,
92
, pp.
348
360
.10.1016/j.apenergy.2011.11.033
18.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1976
, “
On Mathematical Models of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
16th International Symposium on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
719
729
.
19.
Peters
,
N.
,
2000
,
Turbulent Combustion
(Cambridge Monographs on Mechanics),
Cambridge University Press
,
Cambridge, UK
.
20.
Li
,
G.
,
Naud
,
B.
, and
Roekaerts
,
D.
,
2003
, “
Numerical Investigation of a Bluff-Body Stabilised Nonpremixed Flame With Differential Reynolds-Stress Models
,”
Flow, Turbul. Combust.
,
70
(
1–4
), pp.
211
240
.10.1023/B:APPL.0000004931.07292.55
21.
Hollmann
,
C.
, and
Gutheil
,
E.
,
1996
, “
Modeling of Turbulent Spray Diffusion Flames Including Detailed Chemistry
,”
26th International Symposium on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
1731
1738
.
22.
Merci
,
B.
,
Dick
,
E.
,
Vierendeels
,
J.
,
Roekaerts
,
D.
, and
Peeters
,
T. W. J.
,
2001
, “
Application of a New Cubic Turbulence Model to Piloted and Bluff-Body Diffusion Flames
,”
Combust. Flame
,
126
(
1
), pp.
1533
1556
.10.1016/S0010-2180(01)00272-3
23.
Hossain
,
M.
, and
Malalasekera
,
W.
,
2007
, “
A Combustion Model Sensitivity Study for CH4/H2 Bluff-Body Stabilized Flame
,”
Proc. Inst. Mech. Eng., Part C
,
221
(11), pp.
1377
1390
.10.1243/09544062JMES336
24.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
25.
Schmidt
,
D. P.
,
Nouar
,
I. P.
,
Senecal
,
K.
,
Rutland
,
C. J.
,
Martin
,
J. K.
, and
Reitz
,
R. D.
,
1999
, “
Pressure-Swirl Atomization in the Near Field
,” SAE Paper No. 01-0496.
26.
Paul
,
S. C.
, and
Paul
,
M. C.
,
2010
, “
Radiative Heat Transfer During Turbulent Combustion Process
,”
Int. Commun. Heat Mass Transfer
,
37
(1), pp.
1
6
.10.1016/j.icheatmasstransfer.2009.10.005
27.
Brookes
,
S. J.
, and
Moss
,
J. B.
,
1999
, “
Predictions of Soot and Thermal Radiation Properties in Confined Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
116
(
4
), pp.
486
503
.10.1016/S0010-2180(98)00056-X
28.
Ghose
,
P.
,
Patra
,
J.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2014
, “
Effect of Air Flow Distribution on Soot Formation and Radiative Heat Transfer in a Model Liquid Fuel Spray Combustor Firing Kerosene
,”
Int. J. Heat Mass Transfer
,
74
, pp.
143
155
.10.1016/j.ijheatmasstransfer.2014.03.001
29.
Senecal
,
P. K.
,
Schmidt
,
D. P.
,
Nouar
,
I.
,
Rutland
,
C. J.
,
Reitz
,
R. D.
, and
Corradini
,
M. L.
,
1999
, “
Modeling High-Speed Viscous Liquid Sheet Atomization
,”
Int. J. Multiphase Flow
,
25
(
6
), pp.
1073
1097
.10.1016/S0301-9322(99)00057-9
30.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two Phase Flow System
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.10.1017/S0022112072001806
31.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
,
1952
, “
Evaporation From Drops, Part II
,”
Chem. Eng. Prog.
,
48
(
4
), pp.
173
180
.
32.
Ansys Fluent 13.0 Theory Guide.
33.
Bray
,
K. N. C.
, and
Peters
,
N.
,
1994
, “
Laminar Flamelets in Turbulent Flames
,”
Turbulent Reacting Flows
,
P. A.
Libby
, and
F. A.
Williams
, eds.,
Academic Press
,
London
, pp.
63
94
.
34.
Marracino
,
B.
, and
Lentini
,
D.
,
1997
, “
Radiation Modelling in Non-Luminous Non-Premixed Turbulent Flames
,”
Combust. Sci. Technol.
,
128
(1–6), pp.
23
48
.10.1080/00102209708935703
35.
Ravikanti
,
M.
,
Malalasekera
,
W.
,
Hossain
,
M.
, and
Mahmud
,
T.
,
2008
, “
Flamelet Based NOx Radiation Integrated Modelling of Turbulent Non-Premixed Flame Using Reynolds-Stress Model
,”
Flow, Turbul. Combust.
,
81
(
1–2
), pp.
301
319
.10.1007/s10494-007-9127-x
36.
Kundu
,
K. P.
,
Penko
,
P. F.
, and
Yang
,
S. L.
,
1998
, “
Simplified Jet-A/Air Combustion Mechanisms for Calculation of NOx Emissions
,”
AIAA
Paper No. 98-3986. 10.2514/6.98-3986
37.
Moss
,
J. B.
, and
Aksit
,
I. M.
,
2007
, “
Modeling Soot Formation in a Laminar Diffusion Flame Burning a Surrogate Kerosene Fuel
,”
Proc. Combust. Inst.
,
31
(2), pp.
3139
3146
.10.1016/j.proci.2006.07.016
38.
Young
,
K. J.
,
Stewart
,
C. D.
, and
Moss
,
J. B.
,
1994
, “
Soot Formation in Turbulent Nonpremixed Kerosine-Air Flames Burning at Elevated Pressure: Experimental Measurement
,”
25th International Symposium on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
609
617
.
39.
Modest
,
F. M.
,
1993
,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
40.
Watanabe
,
H.
,
Kurose
,
R.
,
Komori
,
S.
, and
Pitsch
,
H.
,
2008
, “
Effects of Radiation on Spray Flame Characteristics and Soot Formation
,”
Combust. Flame
,
152
(
1–2
), pp.
2
13
.10.1016/j.combustflame.2007.07.021
41.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
602
608
.10.1115/1.3245174
42.
Basak
,
A.
,
Patra
,
J.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2013
, “
Effect of Transesterification of Vegetable Oil on Liquid Flow Number and Spray Cone Angle for Pressure and Twin Fluid Atomizers
,”
Fuel
,
112
, pp.
347
354
.10.1016/j.fuel.2013.05.047
43.
Ansys Fluent 13.0 User Guide.
44.
DeSoete
,
G. G.
,
1975
, “
Overall Reaction Rate of NO and N2 Formation From Fuel Nitrogen
,”
15th International Symposium on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
1093
1102
.
You do not currently have access to this content.