An experimental study of the shroud heat transfer behavior and the effectiveness of shroud cooling are undertaken in a single-stage turbine at low rotation speeds. The shroud consists of a periodic distribution of laterally oriented cooling holes that are angled at 45 deg to the shroud surface in a repeating circumferential pattern and has five unique hole pitches in the axial direction. Measurements of the normalized Nusselt number and film cooling effectiveness are done using liquid crystal thermography. These measurements are reported for the no-coolant case and nominal blowing ratios (BRs) of 1.0, 1.5, 2.0, 2.5, and 3.0. The tests are performed at an inflow Reynolds number of 17,500 corresponding to a scaled down design rotation speed of 550 rpm, and two off-design speeds imposed by a motor: (1) a rotation speed below the design speed (400 rpm) and (2) a rotation speed above the design speed (700 rpm). The results at the design speed show that increasing the BR increases the area-averaged film cooling effectiveness, while the Nu/Nu0 in the shroud hole region decreases. As the rotor speed is changed from the design speed, the high Nu/Nu0 region migrates on the shroud surface. This migration affects the coolant coverage in the shroud hole region resulting in increased coolant coverage at below-design rotation speeds and decreased coolant coverage at above-design rotation speeds. At all rotation speeds, as the BR increases, the area-averaged film cooling effectiveness in the shroud hole region increases. Decreasing the circumferential shroud coolant hole spacing changes the lateral heat transfer profile from a periodic sinusoidal distribution for a shroud hole spacing of P/D = 10.4 to a more even distribution for a smaller shroud hole spacing (P/D = 4.8).

References

References
1.
Kanjirakkad
,
V.
,
Thomas
,
R.
,
Hodson
,
H.
,
Janke
,
E.
,
Haselbach
,
F.
, and
Whitney
,
C.
,
2008
, “
Passive Shroud Cooling Concepts for HP Turbines: Experimental Investigations
,”
ASME J. Turbomach.
,
130
(
1
), p. 011017.
2.
Brice
,
M.
,
Pierre
,
G.
,
Strzelecki
,
A.
,
Savary
,
N.
,
Kourta
,
A.
, and
Boisson
,
H. C.
,
2009
, “
Full Coverage Film Cooling Using Compound Angle
,”
C. R. Mec.
,
337
(6–7), pp.
62
72
.
3.
Yang
,
D.
,
Yu
,
X.
, and
Feng
,
Z.
,
2010
, “
Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation
,”
ASME J. Turbomach.
,
132
(
4
), p. 041010.
4.
Rahman
,
M. H.
,
Kim
,
S. I.
, and
Hassan
,
I.
,
2013
, “
Tip Leakage Flow and Heat Transfer on Turbine Blade Tip and Casing—Part 1: Effect of Tip Clearance Height and Rotation Speed
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
14
(
4
), pp.
290
303
.
5.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
6.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
Kind
,
R. J.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part II: Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
,
114
(
3
), pp.
660
667
.
7.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics—Part II: Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
(
2
), pp.
324
333
.
8.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions (I). Time-Mean Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
933
944
.
9.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions (II). Time-Resolved Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
945
960
.
10.
Ekkad
,
S.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.
11.
Metzger
,
D. E.
, and
Larson
,
D. E.
,
1986
, “
Use of Melting Point Surface Coatings for Local Convective Heat Transfer Measurements in Rectangular Channel Flows With 90-degree Turns
,”
ASME J. Heat Transfer
,
108
(1), pp.
48
54
.
12.
Klein
,
E. J.
,
1968
, “
Application of Liquid Crystals to Boundary Layer Flow Visualization
,”
AIAA Paper No. 6
8
.
13.
Smith
,
C. R.
,
Sabatino
,
D. R.
, and
Praisner
,
T. J.
,
2001
, “
Temperature Sensing With Thermochromic Liquid Crystals
,”
Exp. Fluids
,
30
(
2
), pp.
190
201
.
14.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
15.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
580
586
.
16.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.
17.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2003
, “
Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow—Part II: Heat Transfer Coefficients
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
237
249
.
18.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2003
, “
Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow—Part I: Effectiveness
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
221
235
.
19.
Nasir
,
H.
,
Ekkad
,
S. V.
, and
Acharya
,
S.
,
2001
, “
Effect of Compound Angle Injection on Flat Surface Film Cooling With Large Streamwise Injection Angle
,”
Exp. Therm. Fluid Sci.
,
25
(1–2), pp.
23
29
.
20.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
21.
Dittus
,
F. W.
, and
Boelter
,
L. M. K. G.
,
1930
,
Publications on Engineering
, Vol.
2
,
University of California at Berkeley
,
Berkeley, CA
, p.
443
.
22.
Baldauf
,
S.
,
Schleurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film Cooling Effectiveness From Thermographic Measurements at Engine Like Conditions
,”
ASME
Paper No. GT-2002-30180.
23.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1997
, “
Effects of Free-Stream Turbulence and Surface Roughness on Laterally Injected Film Cooling
,”
32nd National Heat Transfer Conference
, Vol. 12, HTD, Vol.
350
, pp.
233
243
.
24.
Sathyamurthy
,
P.
, and
Pantakar
,
S. V.
,
1990
, “
Prediction of Film Cooling With Lateral Injection
,”
Heat Transfer in Turbulent Flows, ASME HTD
, Vol.
138
, pp.
61
70
.
25.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
26.
Goldstein
,
R.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
27.
Gritsch
,
M.
,
Colban
,
W.
,
Schar
,
H.
, and
Dobbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
121
(4), pp.
209
216
.
28.
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Piggush
,
J. D.
,
2013
, “
Overall Effectiveness for a Film Cooled Turbine Blade Leading Edge With Varying Hole Pitch
,”
ASME J. Turbomach.
,
135
(
3
), p. 031011.
You do not currently have access to this content.