To assess the potential of thermal energy storage systems using phase change materials (PCMs), numerical simulations rely on an enthalpy–temperature curve (or equivalent specific heat curve) to model the PCM thermal storage behavior. The so-called “T-history method” can be used to obtain an enthalpy–temperature curve (H versus T) through conventional laboratory equipment and a simple experimental procedure. Different data processing variants of the T-history method have been proposed yet no systematic comparison between these versions exists in the literature nor is there a consensus as to which should be used to obtain reliable enthalpy–temperature curves. In this paper, an inorganic salt hydrate is tested in both heating and cooling. Four different data processing variants of the T-history method are used to characterize the PCM and produce enthalpy–temperature curves for this original experimental data set. Differences in the results produced by the different methods are discussed, the issues encountered are indicated, and possible approaches to overcome these problems are provided. A specific variant is recommended when using the T-history method to determine enthalpy–temperature curves. For PCMs that exhibit subcooling, an alternative interpretation using an absolute temperature interval is described so that the subcooling phase is taken into account in the enthalpy–temperature curve.

References

References
1.
Khudhair
,
A. M.
, and
Farid
,
M. M.
,
2004
, “
A Review on Energy Conservation in Building Applications With Thermal Storage by Latent Heat Using Phase Change Materials
,”
Energy Convers. Manage.
,
45
(
2
), pp.
263
275
.
2.
Kenisarin
,
M.
, and
Mahkamov
,
K.
,
2007
, “
Solar Energy Storage Using Phase Change Materials
,”
Renewable Sustainable Energy Rev.
,
11
(
9
), pp.
1913
1965
.
3.
Tabares-Velasco
,
P. C.
,
Christensen
,
C.
, and
Bianchi
,
M.
,
2012
, “
Verification and Validation of Energyplus Phase Change Material Model for Opaque Wall Assemblies
,”
Build. Environ.
,
54
, pp.
186
196
.
4.
Bony
,
J.
, and
Citherlet
,
S.
,
2007
, “
Numerical Model and Experimental Validation of Heat Storage With Phase Change Materials
,”
Energy Build.
,
39
(
10
), pp.
1065
1072
.
5.
D’Avignon
,
K.
, and
Kummert
,
M.
,
2012
, “
Proposed TRNSYS Model for Storage Tank With Encapsulated Phase Change Materials
,”
5th National Conference of IBPSA-USA
,
Madison
,
WI
, pp.
423
430
.
6.
“PCM Gütegemeinschaft e.V.,” Last accessed Oct. 10, 2014, http://www.pcm-ral.de/en/quality-association/pcm-ral-quality-mark.html/.
7.
Castellón
,
C.
,
Günther
,
E.
,
Mehling
,
H.
,
Hiebler
,
S.
, and
Cabeza
,
L. F.
,
2008
, “
Determination of the Enthalpy of PCM as a Function of Temperature Using a Heat-Flux DSC: A Study of Different Measurement Procedures and Their Accuracy
,”
Int. J. Energy Res.
,
32
(
13
), pp.
1258
1265
.
8.
Günther
,
E.
,
Hiebler
,
S.
,
Mehling
,
H.
, and
Redlich
,
R.
,
2009
, “
Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods
,”
Int. J. Thermophys.
,
30
(
4
), pp.
1257
1269
.
9.
Barreneche
,
C.
,
Solé
,
A.
,
Miró
,
L.
,
Martorell
,
I.
,
Fernández
,
A. I.
, and
Cabeza
,
L. F.
,
2013
, “
Study on Differential Scanning Calorimetry Analysis With Two Operation Modes and Organic and Inorganic Phase Change Material (PCM)
,”
Thermochim. Acta
,
553
, pp.
23
26
.
10.
Lázaro
,
A.
,
Peñalosa
,
C.
,
Solé
,
A.
,
Diarce
,
G.
,
Haussmann
,
T.
,
Fois
,
M.
,
Zalba
,
B.
,
Gshwander
,
S.
, and
Cabeza
,
L. F.
,
2013
, “
Intercomparative Tests on Phase Change Materials Characterisation With Differential Scanning Calorimeter
,”
Appl. Energy
,
109
, pp.
415
420
.
11.
Richardson
,
M. J.
,
1997
, “
Quantitative Aspects of Differential Scanning Calorimetry
,”
Thermochim. Acta
,
300
(
1–2
), pp.
15
28
.
12.
Rudtsch
,
S.
,
2002
, “
Uncertainty of Heat Capacity Measurements With Differential Scanning Calorimeters
,”
Thermochim. Acta
,
382
(
1–2
), pp.
17
25
.
13.
Lázaro
,
A.
,
Günther
,
E.
,
Mehling
,
H.
,
Hiebler
,
S.
,
Marín
,
J. M.
, and
Zalba
,
B.
,
2006
, “
Verification of a T-History Installation to Measure Enthalpy Versus Temperature Curves of Phase Change Materials
,”
J. Meas. Sci. Technol.
,
17
(
8
), pp.
2168
2174
.
14.
Solé
,
A.
,
Miró
,
L.
,
Barreneche
,
C.
,
Martorell
,
I.
, and
Cabeza
,
L. F.
,
2013
, “
Review of the T-History Method to Determine Thermophysical Properties of Phase Change Materials (PCM)
,”
Renewable Sustainable Energy Rev.
,
26
, pp.
425
436
.
15.
Zhang
,
Y.
,
Jiang
,
Y.
, and
Jiang
,
Y.
,
1999
, “
A Simple Method, the T-History Method, of Determining the Heat of Fusion, Specific Heat and Thermal Conductivity of Phase-Change Materials
,”
J. Meas. Sci. Technol.
,
10
(
3
), pp.
201
205
.
16.
Marín
,
J. M.
,
Zalba
,
B.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Determination of Enthalpy-Temperature Curves of Phase Change Materials With the Temperature-History Method: Improvement to Temperature Dependent Properties
,”
J. Meas. Sci. Technol.
,
14
(
2
), pp.
184
189
.
17.
Kravvaritis
,
E. D.
,
Antonopoulos
,
K. A.
, and
Tzivanidis
,
C.
,
2011
, “
Experimental Determination of the Effective Thermal Capacity Function and Other Thermal Properties for Various Phase Change Materials Using the Thermal Delay Method
,”
J. Appl. Energy
,
88
(
12
), pp.
4459
4469
.
18.
Hong
,
H.
,
Kim
,
S. K.
, and
Kim
,
Y.-S.
,
2004
, “
Accuracy Improvement of T-History Method for Measuring Heat of Fusion of Various Materials
,”
Int. J. Refrig.
,
27
(
4
), pp.
360
366
.
19.
Peck
,
J. H.
,
Kim
,
J.-J.
,
Kang
,
C.
, and
Hong
,
H.
,
2006
, “
A Study of Accurate Latent Heat Measurement for a PCM With a Low Melting Temperature Using T-History Method
,”
Int. J. Refrig.
,
29
(
7
), pp.
1225
1232
.
20.
Arkar
,
C.
, and
Medved
,
S.
,
2005
, “
Influence of Accuracy of Thermal Property Data of a Phase Change Material on the Result of a Numerical Model of a Packed Bed Latent Heat Storage With Spheres
,”
Thermochim. Acta
,
438
(
1–2
), pp.
192
201
.
21.
Xie
,
J.
,
Li
,
Y.
,
Wang
,
W.
,
Pan
,
S.
,
Cui
,
N.
, and
Liu
,
J.
,
2013
, “
Comments on Thermal Physical Properties Testing Methods of Phase Change Materials
,”
Adv. Mech. Eng.
,
2013
, pp.
1
9
.
22.
Sandnes
,
B.
, and
Rekstad
,
J.
,
2006
, “
Supercooling Salt Hydrates: Stored Enthalpy as a Function of Temperature
,”
J. Sol. Energy
,
80
(
5
), pp.
616
625
.
23.
Kravvaritis
,
E. D.
,
Antonopoulos
,
K. A.
, and
Tzivanidis
,
C.
,
2010
, “
Improvements to the Measurement of the Thermal Properties of Phase Change Materials
,”
J. Meas. Sci. Technol.
,
21
(
4
), pp.
1
9
.
24.
PCM Products, Ltd.
,
2015
, “
Phase Change Materials: Thermal Management Solutions
,” http://www.pcmproducts.net
25.
National Instruments Corporation, Last accessed Oct. 29, 2014, www.ni.com
26.
Rathgeber
,
C.
,
Miró
,
L.
,
Cabeza
,
L. F.
, and
Hiebler
,
S.
,
2014
, “
Measurement of Enthalpy Curves of Phase Change Materials Via DSC and T-History: When are Both Methods Needed to Estimate the Behaviour of the Bulk Material in Applications?
Thermochim. Acta
,
596
, pp.
79
88
.
27.
Popiel
,
C. O.
,
Wojtkowiak
,
J.
, and
Bober
,
K.
,
2007
, “
Laminar Free Convective Heat Transfer From Isothermal Vertical Slender Cylinder
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
607
613
.
28.
Delcroix
,
B.
,
Kummert
,
M.
,
Daoud
,
A.
, and
Bouchard
,
J.
,
2015
, “
Influence of Experimental Conditions on Measured Thermal Properties Used to Model Phase Change Materials
,”
Build. Simul
. in progress.
You do not currently have access to this content.